Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration

Michele Polese*, Marco Mezzavilla+, Michele Zorzi*

*Department of Information Engineering, University of Padova, Italy e-mail: {polesemi, zorzi}@dei.unipd.it

+Tandon School of Engineering, New York University, Brooklyn NY, USA e-mail: mezzavilla@nyu.edu

SIMUTools 2016, Prague, Czech Republic August 23rd, 2016

LTE-5G Tight Integration

- Dual Connectivity Architecture
- Extension of NYU ns-3 mmWave Simulator
- Metrics and Preliminary Results
- Conclusions and Future Work

Different targets:

Very high bandwidth

Ultra-low latency

- mmWave communications

Massive number of devices Sub 1 GHz comms

Different targets – different technologies

Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, June 2011

mmWave: very high throughput

BUT

Variable signal quality, possible link failures

LTE network as fallback – coverage layer

Hard Handover (HH)

Dual Connectivity (DC) with Fast Switching

Dual Connectivity Architecture

- Single PDCP layer in the "coordinator" (new node or LTE eNB)
- RLC entity in the LTE and mmWave eNBs
- Single connection to Core Network

Switch:

- a RRC message to UE
- X2 notification to mmWave eNB

- Channel model based on real measurements
- Fully configurable TDD physical layer
- MAC layer with HARQ, scheduler
- Upper layers (RLC, PDCP, RRC) from LTE ns-3 module

Extension to LTE-5G Integration

8

Dual Connected UE

New PDCP layer

- PDCP-RLC forwarding on X2
- Integration of LTE and

mmWave channels

Main Features

Procedures for Fast Switching:

Initial Access, Secondary Cell Handover, Switch

mmWave SINR estimation with reference signals

RLC with finite-size buffers

X2-based handover between LTE and 5G

Throughput at different layers

Packet losses

Latency at different layers

Control traffic (RRC)

X2 and S1 traffic

Parameter	Value
Outage threshold	-5 dB
mmWave carrier frequency	28 GHz
mmWave bandwidth	1 GHz
LTE carrier frequency (DL)	2.1 GHz
LTE bandwidth	20 MHz
X2 link latency D_{X2}	$1 \mathrm{ms}$
RLC AM buffer size B_{RLC}	$10 \mathrm{MB}$
S1-MME link latency	$10 \mathrm{ms}$
UDP packet size	1024 byte
UDP packet interarrival	$80 \ \mu s$
UE speed s	2 m/s along the x axis (Fig. 3)
Iterations	N = 10

PDCP Throughput

Dual Connectivity	106.70 Mbit/s
Hard Handover	104.98 Mbit/s

Example: latency over time

 $\bigcap_{i=1}^{n}$

RLC Latency

Dual Connectivity	$5.1 \mathrm{ms}$
Hard Handover	$18.1 \mathrm{ms}$

LTE-5G Dual Connectivity architecture

- Extension of NYU mmWave ns-3 simulator
- Examples of metrics that can be collected
 - DC performs better than HH, for more results see [1]
- □ Flexible framework, it opens many research directions

[1] M. Polese, *Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks*, Master's thesis, Dept. of Information Engineering, University of Padova, July 2016. Available at http://arxiv.org/abs/1607.04330

Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration

Michele Polese*, Marco Mezzavilla+, Michele Zorzi*

*Department of Information Engineering, University of Padova, Italy e-mail: {polesemi, zorzi}@dei.unipd.it

*Tandon School of Engineering, New York University, Brooklyn NY, USA e-mail: mezzavilla@nyu.edu

SIMUTools 2016, Prague, Czech Republic August 23rd, 2016

