

Cell Traffic Prediction Using Joint Spatio-Temporal Information

Enrico Lovisotto, Enrico Vianello, Davide Cazzaro, Michele Polese, Federico Chiariotti, Daniel Zucchetto, Andrea Zanella, Michele Zorzi

> Dept. of Information Engineering, University of Padova, Italy

May 4th, 2017

Outline

- Contribution
- Prediction techniques
- Cell load prediction
 - The dataset
 - Results

Conclusions

Prediction in Cellular Networks

Anticipatory networking

Predict future network states and optimize the network

> Focus on cell load prediction, enabling smart load balancing

Contribution

- State-of-the-art techniques use
 - Traffic in time in a single base station (BS)
 - Call Data Records (i.e., network level information)
 - Spatial information
 - Analytical, closed-form, simplified models

We apply machine learning techniques combining spatial and temporal information

- 10 minutes granularity
- Improved prediction in noisiest scenarios

Given two points (i, j) characterized by their position (x, y) and time t, let the distance $d_{i,j}$ be

The spatio-temporal neighborhood N_m^β of point m is the set of points at a distance smaller than β

$$N_m^{\beta} = \{ p : d_{m,p} < \beta \}.$$
 (2)

Indicators

For the prediction at time t of the load at cell m use

- the value of the cell load z_p for each point $p \in N_m^\beta$
- three indicators

Weighted mean
$$\omega(N_m^\beta) = \frac{1}{|N_m^\beta|} \sum_{p \in N_m^\beta} \frac{z_p}{d_{m,p}}$$
 (3)

• Spread
$$\sigma(N_m^\beta) = \sqrt{\frac{1}{|N_m^\beta|}} \sum_{p \in N_m^\beta} (z_p - \bar{z})^2, \quad (4)$$

• Weighted tendency
$$\tau(N_m^{\beta_1,\beta_2}) = \frac{\omega(N_m^{\beta_1})}{\omega(N_m^{\beta_2})}.$$
 (5)

Prediction techniques: regression

Simple and efficient techniques

- Multiple linear regression (least square loss)
- Regularized linear regression (avoid overfitting)
 - Ridge square penalty
 - Lasso linear penalty
 - Elastic net combination of the previous

Prediction techniques: ML

More complex algorithms

- Support Vector Machines (SVMs) with Support Vector Regression techniques
- Random Forest (RF)
- Neural Networks (NNs) with stochastic gradient descent method for backpropagation

The dataset

Telecom Italia Big Data Challenge 2014 dataset

- Records of internet usage in Milan
- 2 months of data (Nov and Dec 2013)
- Grids of cells with $d_0 = 200$ m
- Sampling interval T = 600 s

Normalized mean internet usage

Cells analyzed

For computational reasons, we considered 9 representative cells:

- 2583, 4241 average traffic close to the average over the whole city (orange)
- 5060, 5091, 7724 high peak usage (red)
- 4856, 5259, 5262, 6065 high average traffic (blue)

Parameters optimization

- Exhaustive search
- I0-fold cross-validation
- α and β optimized for each cell (up to 46 neighbors)

Parameter	Value	Description					
$\overline{\lambda_R}$	$[1.637e-6, 0.074]^*$	Ridge regularization parameter	Cell id	α	β	Number of neighbors	
λ_L $\lambda_B E$	$[10, 1.105e-5]^*$	Ridge regularization (elastic net)	2583	0.25	2	27	
$\lambda_{L,E}$	[0, 4.665e-6]*	Lasso regularization (elastic net)	4241, 4856	2.25	3	25	
C	[0.22, 34.081]*	SVR linear kernel penalization term	5060	0.09	2	46	
N_t	200	Number of RF trees	5091	0.19	2	28	
γ	10^{-3}	NN learning rate	5259, 5262, 6065	0.12	2	37	
$N_{\rm iter}$	10^{4}	Maximum NN iterations	7724	0.19	2	28	
ε	10^{-10}	NN convergence tolerance					
*These parameters were optimized for each cell.			OPTIMAL NEIGHBORHOOD DEFINITION FOR EACH CELL.				

TABLE IPARAMETERS USED IN THE SIMULATION.

Prediction methods comparison

MOCAST, May 4th, 2017

Prediction methods comparison

Cells 2583, 4241, 5091 are close to major traffic roads or hubs

Spatio-temporal information improves prediction accuracy

- Real data from Telecom Italia network
- Simplest and most efficient methods give best results
- Spatio-temporal information improves prediction in high mobility scenarios
- Future work
 - More systematic study of the dataset
 - Introduction of new indicators
 - In-depth study of neighborhood size impact

Cell Traffic Prediction Using Joint Spatio-Temporal Information

Enrico Lovisotto, Enrico Vianello, Davide Cazzaro, Michele Polese, Federico Chiariotti, Daniel Zucchetto, Andrea Zanella, Michele Zorzi

> Dept. of Information Engineering, University of Padova, Italy

May 4th, 2017