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Outline

§ Contribution

§ Prediction techniques

§ Cell load prediction
§ The dataset
§ Results

§ Conclusions
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Prediction in Cellular Networks

Anticipatory networking

Predict future network states 
and optimize the network

Focus on cell load prediction, 
enabling smart load balancing
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Contribution

§ State-of-the-art techniques use
§ Traffic in time in a single base station (BS)
§ Call Data Records (i.e., network level information)
§ Spatial information
§ Analytical, closed-form, simplified models 

We apply machine learning techniques 
combining spatial and temporal information

§ 10 minutes granularity
§ Improved prediction in noisiest scenarios



CS
C	
–
SM

C	
Gr
ou

p
M

OC
AS

T,
 M

ay
4t

h , 
20

17
Spatio-temporal neighborhood

Given two points (𝑖, 𝑗) characterized by their position
(𝑥, 𝑦) and time 𝑡, let the distance 𝑑𝑖, 𝑗 be
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Abstract—In future cellular networks, the ability to predict

network parameters such as cell load will be a key enabler of

several proposed adaptation and resource allocation techniques.

In this study, we consider a joint exploitation of spatio-temporal

data to improve the prediction accuracy of standard regression

methods. We test several such methods from the literature on a

publicly available dataset and document the advantages of the

proposed approach.

I. INTRODUCTION

The evolution of cellular networks from 4G to 5G will
rely on adaptive techniques in order to manage the increas-
ing complexity of mobile systems [1]. Up to now, cellular
networks were designed using worst-case dimensioning, but
the increasingly strict capacity, latency and energy efficiency
requirements, together with the lower profit margins, make a
smarter approach appealing to network operators.

Anticipatory networking [2] is one of the most promis-
ing approaches in smart network adaptation: the idea is to
exploit knowledge of the dynamics of the system in order
to predict future network states and tailor the configuration
to the expected profile. There are several possible contexts
for the prediction, from a single user’s channel gain [3] to
large-scale mobility patterns [4]. In this work, we present
several prediction techniques whose aim is to estimate future
cell load, which is a key parameter in network planning and
optimization.

A. Related Work

In the scientific literature, cell load prediction techniques
are studied because of the potential gain they can provide
to the performance of the network in a wide range of sce-
narios, such as energy efficient communications and dynamic
network planning. In [5] the authors propose to use prediction
techniques based on traffic matrices collected for groups of
Base Stations (BSs) under the same coordinator in order to
optimize the sleeping time of network elements, while in [6]
a classification and prediction method is applied to temporal
information given by Call Data Records in order to decide
when and where it is appropriate to deploy femtocells. The
spatio-temporal relation between cells is analyzed in [7], where
insights on the predictability of the traffic in a cellular network
are given; however, the authors do not attempt to predict future
values of the cell load, but use large-scale traffic patterns to

examine the correlation. The study in [8] uses traffic variations
in cell neighborhoods, using a Markov decision process model,
in order to enable energy saving techniques. There are other
studies that consider the spatio-temporal context in cellular
networks, but their focus is on the prediction of mobility of
users [9], [10]. These can be then exploited in association with
some knowledge of the network topology, as done in [11].

B. Contribution

The novelty of our work with respect to previous studies
is that we consider machine learning techniques that exploit
temporal and spatial data jointly: a cell’s future load depends
not only on its previous values, but also on the loads of neigh-
boring cells. This joint approach can improve the prediction
accuracy, especially in the noisiest and most challenging cases.
We focus on medium-term prediction with a range of tens of
minutes; such a range is still usable for network optimization,
but is not as noisy and unpredictable as short-term cell load.

The rest of the paper is organized as follows: first, we
present in Sec. II the prediction techniques we employed.
Then, we describe the results on real data from the city of
Milan in Sec. III. Finally, Sec. IV concludes the paper and
lists some possible avenues for future work.

II. PREDICTION TECHNIQUES

All the techniques we present in this paper are based
on the exploitation of spatio-temporal data, which was first
proposed by Ohashi et al. [12]. In order to jointly consider
the spatial and temporal data, we need to define the concept
of spatio-temporal neighborhood. If a cell at a given instant is
characterized by its position in space and time, given by the
vector (x, y, t), we define the distance between two points as

di,j =

s✓
xi � xj

d0

◆2

+

✓
yi � yj

d0

◆2

+ ↵

✓
ti � tj

T

◆2

, (1)

where d0 is the inter-cell distance and T is the time interval
between measurements. Note that the spatio-temporal distance
between different instants is non-zero even if the cell is the
same, i.e., the spatial distance is 0. The parameter ↵ � 0 is a
weighting factor to combine the spatial and temporal measures.

Inter-cell distance Sampling interval

The spatio-temporal neighborhood 𝑁+
, of point 𝑚	is the

set of points at a distance smaller than 𝛽

The spatio-temporal neighborhood of a point m can then be
defined as the set of the discrete points in the dataset whose
distance from m is smaller than some radius �:

N

�
m = {p : dm,p < �} . (2)

The points belonging to the spatio-temporal neighborhood are
contained in an ellipsoid in space-time, and, given the same
�, a smaller ↵ includes in the neighborhood points which are
further away in time. The cell load values zp of the points
within the neighborhood can be used in the prediction. In
addition to the pure values, we also use as input a series of
indicators that capture some of the most relevant dynamics of
the cell load, as in [12].

We implemented three indicators, which are listed below:
• The weighted mean is an average of the cell load values

in the neighborhood, weighted by their spatio-temporal
distance, and is given by:

!(N�
m) =

1

|N�
m|

X

p2N�
m

zp

dm,p
(3)

• The spread is the standard deviation of the cell load
values in the spatio-temporal neighborhood:

�(N�
m) =

vuut
1

|N�
m|

X

p2N�
m

(zp � z̄)2, (4)

where z̄ is the arithmetic mean of the cell load of all the
points in the neighborhood.

• The weighted tendency is given by the ratio between the
weighted means with two radii �1 < �2 (following [12],
we choose �2 = � = 2�1):

⌧(N�1,�2
m ) =

!(N�1
m )

!(N�2
m )

. (5)

This indicator summarizes the trend of the cell load
as it approaches the target location. For example, if
⌧(N�1,�2

m ) > 1, then the load on the closest points in
time and space is larger than that of farther points.

While in [12] the indicators are added to a purely temporal
prediction, in our work we also use the cell load values of all
the points in the spatio-temporal neighborhood as predictors.

A. Prediction algorithms

We tested the performance of several well-known prediction
algorithms using the input we described above. The algorithms
we used represent the state of the art for prediction with time
series [13], [14], and are briefly described below:

• The simplest method we tested was the basic multiple
linear regression [15], using least squares as a loss
function.

• Given the highly variable nature of the data, we im-
plemented some regularization techniques in order to
avoid the risk of overfitting; we used three methods of
regularized linear regression.
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Fig. 1. Normalized average internet usage map.

– Ridge regression [16] is a shrinkage method that adds
a square penalty to the least squares loss, weighted
by a regularization parameter �R.

– Lasso regression [17] is a shrinkage method very
similar to ridge regression, but uses a linear penalty
instead of a square penalty.

– Elastic net regression [18] is a linear combination
of the lasso and ridge regularization techniques, and
is particularly useful when the number of predictors
is larger than the number of observations and in the
presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a
classification tool, but they can be adapted to output real
numbers, giving us the Support Vector Regression (SVR)
technique [19]. We used SVR with a linear kernel, which
has a regularization parameter C.

• Random Forest (RF) [20] is an ensemble estimator that
consists of a number of regression trees, whose output
is the average output of all the trees. For optimal per-
formance, the trees’ decisions should be uncorrelated,
and dataset bagging and random training techniques are
employed to obtain this property.

• Neural Networks (NNs) [21] are well-known learning
tools which use back-propagation to learn an objective
function. In our work, we use the stochastic gradient
descent method of back-propagation, using the tanh
activation function.

III. RESULTS

All the prediction methods we described above were trained
and tested using the Telecom Italia Big Data Challenge 2014
dataset,1 which contains the records of the internet usage for a

1
https://dandelion.eu/datamine/open-big-data/
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Indicators

For the prediction at time 𝑡 of the load at cell m use
§ the value of the cell load 𝑧1 for each point 𝑝 ∈ 𝑁+

,

§ three indicators
§ Weighted mean

§ Spread

§ Weighted tendency

The spatio-temporal neighborhood of a point m can then be
defined as the set of the discrete points in the dataset whose
distance from m is smaller than some radius �:

N

�
m = {p : dm,p < �} . (2)

The points belonging to the spatio-temporal neighborhood are
contained in an ellipsoid in space-time, and, given the same
�, a smaller ↵ includes in the neighborhood points which are
further away in time. The cell load values zp of the points
within the neighborhood can be used in the prediction. In
addition to the pure values, we also use as input a series of
indicators that capture some of the most relevant dynamics of
the cell load, as in [12].

We implemented three indicators, which are listed below:
• The weighted mean is an average of the cell load values

in the neighborhood, weighted by their spatio-temporal
distance, and is given by:

!(N�
m) =

1

|N�
m|

X

p2N�
m

zp

dm,p
(3)

• The spread is the standard deviation of the cell load
values in the spatio-temporal neighborhood:

�(N�
m) =

vuut
1

|N�
m|

X

p2N�
m

(zp � z̄)2, (4)

where z̄ is the arithmetic mean of the cell load of all the
points in the neighborhood.

• The weighted tendency is given by the ratio between the
weighted means with two radii �1 < �2 (following [12],
we choose �2 = � = 2�1):

⌧(N�1,�2
m ) =

!(N�1
m )

!(N�2
m )

. (5)

This indicator summarizes the trend of the cell load
as it approaches the target location. For example, if
⌧(N�1,�2

m ) > 1, then the load on the closest points in
time and space is larger than that of farther points.

While in [12] the indicators are added to a purely temporal
prediction, in our work we also use the cell load values of all
the points in the spatio-temporal neighborhood as predictors.

A. Prediction algorithms

We tested the performance of several well-known prediction
algorithms using the input we described above. The algorithms
we used represent the state of the art for prediction with time
series [13], [14], and are briefly described below:

• The simplest method we tested was the basic multiple
linear regression [15], using least squares as a loss
function.

• Given the highly variable nature of the data, we im-
plemented some regularization techniques in order to
avoid the risk of overfitting; we used three methods of
regularized linear regression.
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Fig. 1. Normalized average internet usage map.

– Ridge regression [16] is a shrinkage method that adds
a square penalty to the least squares loss, weighted
by a regularization parameter �R.

– Lasso regression [17] is a shrinkage method very
similar to ridge regression, but uses a linear penalty
instead of a square penalty.

– Elastic net regression [18] is a linear combination
of the lasso and ridge regularization techniques, and
is particularly useful when the number of predictors
is larger than the number of observations and in the
presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a
classification tool, but they can be adapted to output real
numbers, giving us the Support Vector Regression (SVR)
technique [19]. We used SVR with a linear kernel, which
has a regularization parameter C.

• Random Forest (RF) [20] is an ensemble estimator that
consists of a number of regression trees, whose output
is the average output of all the trees. For optimal per-
formance, the trees’ decisions should be uncorrelated,
and dataset bagging and random training techniques are
employed to obtain this property.

• Neural Networks (NNs) [21] are well-known learning
tools which use back-propagation to learn an objective
function. In our work, we use the stochastic gradient
descent method of back-propagation, using the tanh
activation function.

III. RESULTS

All the prediction methods we described above were trained
and tested using the Telecom Italia Big Data Challenge 2014
dataset,1 which contains the records of the internet usage for a

1
https://dandelion.eu/datamine/open-big-data/

The spatio-temporal neighborhood of a point m can then be
defined as the set of the discrete points in the dataset whose
distance from m is smaller than some radius �:

N

�
m = {p : dm,p < �} . (2)

The points belonging to the spatio-temporal neighborhood are
contained in an ellipsoid in space-time, and, given the same
�, a smaller ↵ includes in the neighborhood points which are
further away in time. The cell load values zp of the points
within the neighborhood can be used in the prediction. In
addition to the pure values, we also use as input a series of
indicators that capture some of the most relevant dynamics of
the cell load, as in [12].

We implemented three indicators, which are listed below:
• The weighted mean is an average of the cell load values

in the neighborhood, weighted by their spatio-temporal
distance, and is given by:

!(N�
m) =

1

|N�
m|

X

p2N�
m

zp

dm,p
(3)

• The spread is the standard deviation of the cell load
values in the spatio-temporal neighborhood:

�(N�
m) =

vuut
1

|N�
m|

X

p2N�
m

(zp � z̄)2, (4)

where z̄ is the arithmetic mean of the cell load of all the
points in the neighborhood.

• The weighted tendency is given by the ratio between the
weighted means with two radii �1 < �2 (following [12],
we choose �2 = � = 2�1):

⌧(N�1,�2
m ) =

!(N�1
m )

!(N�2
m )

. (5)

This indicator summarizes the trend of the cell load
as it approaches the target location. For example, if
⌧(N�1,�2

m ) > 1, then the load on the closest points in
time and space is larger than that of farther points.

While in [12] the indicators are added to a purely temporal
prediction, in our work we also use the cell load values of all
the points in the spatio-temporal neighborhood as predictors.

A. Prediction algorithms

We tested the performance of several well-known prediction
algorithms using the input we described above. The algorithms
we used represent the state of the art for prediction with time
series [13], [14], and are briefly described below:

• The simplest method we tested was the basic multiple
linear regression [15], using least squares as a loss
function.

• Given the highly variable nature of the data, we im-
plemented some regularization techniques in order to
avoid the risk of overfitting; we used three methods of
regularized linear regression.
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Fig. 1. Normalized average internet usage map.

– Ridge regression [16] is a shrinkage method that adds
a square penalty to the least squares loss, weighted
by a regularization parameter �R.

– Lasso regression [17] is a shrinkage method very
similar to ridge regression, but uses a linear penalty
instead of a square penalty.

– Elastic net regression [18] is a linear combination
of the lasso and ridge regularization techniques, and
is particularly useful when the number of predictors
is larger than the number of observations and in the
presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a
classification tool, but they can be adapted to output real
numbers, giving us the Support Vector Regression (SVR)
technique [19]. We used SVR with a linear kernel, which
has a regularization parameter C.

• Random Forest (RF) [20] is an ensemble estimator that
consists of a number of regression trees, whose output
is the average output of all the trees. For optimal per-
formance, the trees’ decisions should be uncorrelated,
and dataset bagging and random training techniques are
employed to obtain this property.

• Neural Networks (NNs) [21] are well-known learning
tools which use back-propagation to learn an objective
function. In our work, we use the stochastic gradient
descent method of back-propagation, using the tanh
activation function.

III. RESULTS

All the prediction methods we described above were trained
and tested using the Telecom Italia Big Data Challenge 2014
dataset,1 which contains the records of the internet usage for a

1
https://dandelion.eu/datamine/open-big-data/

The spatio-temporal neighborhood of a point m can then be
defined as the set of the discrete points in the dataset whose
distance from m is smaller than some radius �:

N

�
m = {p : dm,p < �} . (2)

The points belonging to the spatio-temporal neighborhood are
contained in an ellipsoid in space-time, and, given the same
�, a smaller ↵ includes in the neighborhood points which are
further away in time. The cell load values zp of the points
within the neighborhood can be used in the prediction. In
addition to the pure values, we also use as input a series of
indicators that capture some of the most relevant dynamics of
the cell load, as in [12].

We implemented three indicators, which are listed below:
• The weighted mean is an average of the cell load values

in the neighborhood, weighted by their spatio-temporal
distance, and is given by:

!(N�
m) =

1

|N�
m|

X

p2N�
m

zp

dm,p
(3)

• The spread is the standard deviation of the cell load
values in the spatio-temporal neighborhood:

�(N�
m) =

vuut
1

|N�
m|

X

p2N�
m

(zp � z̄)2, (4)

where z̄ is the arithmetic mean of the cell load of all the
points in the neighborhood.

• The weighted tendency is given by the ratio between the
weighted means with two radii �1 < �2 (following [12],
we choose �2 = � = 2�1):

⌧(N�1,�2
m ) =

!(N�1
m )

!(N�2
m )

. (5)

This indicator summarizes the trend of the cell load
as it approaches the target location. For example, if
⌧(N�1,�2

m ) > 1, then the load on the closest points in
time and space is larger than that of farther points.

While in [12] the indicators are added to a purely temporal
prediction, in our work we also use the cell load values of all
the points in the spatio-temporal neighborhood as predictors.

A. Prediction algorithms

We tested the performance of several well-known prediction
algorithms using the input we described above. The algorithms
we used represent the state of the art for prediction with time
series [13], [14], and are briefly described below:

• The simplest method we tested was the basic multiple
linear regression [15], using least squares as a loss
function.

• Given the highly variable nature of the data, we im-
plemented some regularization techniques in order to
avoid the risk of overfitting; we used three methods of
regularized linear regression.
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– Ridge regression [16] is a shrinkage method that adds
a square penalty to the least squares loss, weighted
by a regularization parameter �R.

– Lasso regression [17] is a shrinkage method very
similar to ridge regression, but uses a linear penalty
instead of a square penalty.

– Elastic net regression [18] is a linear combination
of the lasso and ridge regularization techniques, and
is particularly useful when the number of predictors
is larger than the number of observations and in the
presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a
classification tool, but they can be adapted to output real
numbers, giving us the Support Vector Regression (SVR)
technique [19]. We used SVR with a linear kernel, which
has a regularization parameter C.

• Random Forest (RF) [20] is an ensemble estimator that
consists of a number of regression trees, whose output
is the average output of all the trees. For optimal per-
formance, the trees’ decisions should be uncorrelated,
and dataset bagging and random training techniques are
employed to obtain this property.

• Neural Networks (NNs) [21] are well-known learning
tools which use back-propagation to learn an objective
function. In our work, we use the stochastic gradient
descent method of back-propagation, using the tanh
activation function.

III. RESULTS

All the prediction methods we described above were trained
and tested using the Telecom Italia Big Data Challenge 2014
dataset,1 which contains the records of the internet usage for a

1
https://dandelion.eu/datamine/open-big-data/
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Prediction techniques: regression

§ Multiple linear regression (least square loss)

§ Regularized linear regression (avoid 
overfitting)
§ Ridge – square penalty
§ Lasso – linear penalty
§ Elastic net - combination of the previous

Simple and efficient techniques
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Prediction techniques: ML

§ Support Vector Machines (SVMs) with 
Support Vector Regression techniques

§ Random Forest (RF)

§ Neural Networks (NNs) with stochastic 
gradient descent method for back-
propagation

More complex algorithms
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The dataset

Telecom Italia Big Data Challenge 2014 dataset
§ Records of internet usage in Milan
§ 2 months of data (Nov and Dec 2013)
§ Grids of cells with 𝑑4 = 200	m
§ Sampling interval 𝑇 = 600	s

The spatio-temporal neighborhood of a point m can then be
defined as the set of the discrete points in the dataset whose
distance from m is smaller than some radius �:

N

�
m = {p : dm,p < �} . (2)

The points belonging to the spatio-temporal neighborhood are
contained in an ellipsoid in space-time, and, given the same
�, a smaller ↵ includes in the neighborhood points which are
further away in time. The cell load values zp of the points
within the neighborhood can be used in the prediction. In
addition to the pure values, we also use as input a series of
indicators that capture some of the most relevant dynamics of
the cell load, as in [12].

We implemented three indicators, which are listed below:
• The weighted mean is an average of the cell load values

in the neighborhood, weighted by their spatio-temporal
distance, and is given by:

!(N�
m) =

1

|N�
m|

X

p2N�
m

zp

dm,p
(3)

• The spread is the standard deviation of the cell load
values in the spatio-temporal neighborhood:

�(N�
m) =

vuut
1

|N�
m|

X

p2N�
m

(zp � z̄)2, (4)

where z̄ is the arithmetic mean of the cell load of all the
points in the neighborhood.

• The weighted tendency is given by the ratio between the
weighted means with two radii �1 < �2 (following [12],
we choose �2 = � = 2�1):

⌧(N�1,�2
m ) =

!(N�1
m )

!(N�2
m )

. (5)

This indicator summarizes the trend of the cell load
as it approaches the target location. For example, if
⌧(N�1,�2

m ) > 1, then the load on the closest points in
time and space is larger than that of farther points.

While in [12] the indicators are added to a purely temporal
prediction, in our work we also use the cell load values of all
the points in the spatio-temporal neighborhood as predictors.

A. Prediction algorithms

We tested the performance of several well-known prediction
algorithms using the input we described above. The algorithms
we used represent the state of the art for prediction with time
series [13], [14], and are briefly described below:

• The simplest method we tested was the basic multiple
linear regression [15], using least squares as a loss
function.

• Given the highly variable nature of the data, we im-
plemented some regularization techniques in order to
avoid the risk of overfitting; we used three methods of
regularized linear regression.
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Fig. 1. Normalized average internet usage map.

– Ridge regression [16] is a shrinkage method that adds
a square penalty to the least squares loss, weighted
by a regularization parameter �R.

– Lasso regression [17] is a shrinkage method very
similar to ridge regression, but uses a linear penalty
instead of a square penalty.

– Elastic net regression [18] is a linear combination
of the lasso and ridge regularization techniques, and
is particularly useful when the number of predictors
is larger than the number of observations and in the
presence of highly correlated predictors.

• Support Vector Machines (SVMs) are mostly known as a
classification tool, but they can be adapted to output real
numbers, giving us the Support Vector Regression (SVR)
technique [19]. We used SVR with a linear kernel, which
has a regularization parameter C.

• Random Forest (RF) [20] is an ensemble estimator that
consists of a number of regression trees, whose output
is the average output of all the trees. For optimal per-
formance, the trees’ decisions should be uncorrelated,
and dataset bagging and random training techniques are
employed to obtain this property.

• Neural Networks (NNs) [21] are well-known learning
tools which use back-propagation to learn an objective
function. In our work, we use the stochastic gradient
descent method of back-propagation, using the tanh
activation function.

III. RESULTS

All the prediction methods we described above were trained
and tested using the Telecom Italia Big Data Challenge 2014
dataset,1 which contains the records of the internet usage for a

1
https://dandelion.eu/datamine/open-big-data/
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Cells analyzed

For computational reasons, we considered 9 
representative cells:

§ 2583, 4241 average traffic close to the average over 
the whole city (orange)

§ 5060, 5091, 7724 high peak usage (red)
§ 4856, 5259, 5262, 6065 high average traffic (blue)
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Parameters optimization

§ Exhaustive search
§ 10-fold cross-validation
§ 𝛼	and 𝛽 optimized for each cell (up to 46 neighbors)2583 4241 4856 5060 5091 5259 5262 6065 7724
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Fig. 2. Performance of the tested regression methods.

grid of square cells with 200 m sides (which makes d0 = 200
m in Eq. (1)) in the city of Milan, Italy, for the last two months
of 2013. The data had a sampling period of 10 minutes (i.e.,
T = 600 s in Eq. (1)). The normalized mean internet usage is
overlaid on a map of the city in Fig. 1.

For computational reasons, we only predicted the load of a
small but representative subset of cells, namely, the cells with
id 2583, 4241, 4856, 5060, 5091, 5259, 5262, 6065 and 7724.
These cells were selected because they are placed in different
areas of the city and they show different traffic patterns. In
particular, cells 2583 and 4241 have an average traffic that is
close to the average traffic for the whole city, cells 5060, 5091
and 7724 show very high peak usage, and cells 4856, 5259,
5262 and 6065 have a very high average traffic.

The metric we chose for the results was the coefficient of
determination R

2 [22], which is a commonly used metric in
the regression literature, and gives an indication of how well
the regression model describes the observed data.

A. Parameter optimization

All the parameters of the prediction algorithms were opti-
mized by exhaustive search with 10-fold cross-validation, after
dividing the dataset into training, validation and testing sets.
The chosen values of the parameters are listed in Table I.

The values of the spatio-temporal weighting factor ↵ and of
the neighborhood radius � were optimized for each cell and
are listed in Table II, for a number of neighbors from 27 to
46.

B. Prediction results

Fig. 2 shows the prediction accuracy on the test set for each
regression method. The figure clearly shows that the NN is not
an accurate method, probably due to an insufficient training
set size, whereas the other algorithms often have a similar
performance. The reason is that the cell load can be easily

Parameter Value Description

�R [1.637e-6, 0.074]⇤ Ridge regularization parameter
�L [1e-06, 4.665e-6]⇤ Lasso regularization parameter
�R,E [0, 1.105e-5]⇤ Ridge regularization (elastic net)
�L,E [0, 4.665e-6]⇤ Lasso regularization (elastic net)
C [0.22, 34.081]⇤ SVR linear kernel penalization term
Nt 200 Number of RF trees
� 10�3 NN learning rate
Niter 104 Maximum NN iterations
" 10�10 NN convergence tolerance
⇤These parameters were optimized for each cell.

TABLE I
PARAMETERS USED IN THE SIMULATION.

Cell id ↵ � Number of neighbors

2583 0.25 2 27
4241, 4856 2.25 3 25
5060 0.09 2 46
5091 0.19 2 28
5259, 5262, 6065 0.12 2 37
7724 0.19 2 28

TABLE II
OPTIMAL NEIGHBORHOOD DEFINITION FOR EACH CELL.

predicted in most cells, and therefore the differences among
different algorithms are minimal. On the other hand, in cells
with poor prediction accuracy different methods show some
performance difference. This reveals that, when the behavior of
the load in a cell is less predictable, the prediction performance
can be improved using different algorithms and additional
context information. Indeed, the simple linear regression and
ridge regression have a slightly better performance in cells
2583, 4241 and 5091, which are all located in peripheral
areas of the city, close to major traffic roads or hubs (Via
Gianbellino for cell 2583, the A1 highway for cell 4241, and
Linate airport for cell 5091). In locations like these, with high
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grid of square cells with 200 m sides (which makes d0 = 200
m in Eq. (1)) in the city of Milan, Italy, for the last two months
of 2013. The data had a sampling period of 10 minutes (i.e.,
T = 600 s in Eq. (1)). The normalized mean internet usage is
overlaid on a map of the city in Fig. 1.

For computational reasons, we only predicted the load of a
small but representative subset of cells, namely, the cells with
id 2583, 4241, 4856, 5060, 5091, 5259, 5262, 6065 and 7724.
These cells were selected because they are placed in different
areas of the city and they show different traffic patterns. In
particular, cells 2583 and 4241 have an average traffic that is
close to the average traffic for the whole city, cells 5060, 5091
and 7724 show very high peak usage, and cells 4856, 5259,
5262 and 6065 have a very high average traffic.

The metric we chose for the results was the coefficient of
determination R

2 [22], which is a commonly used metric in
the regression literature, and gives an indication of how well
the regression model describes the observed data.

A. Parameter optimization

All the parameters of the prediction algorithms were opti-
mized by exhaustive search with 10-fold cross-validation, after
dividing the dataset into training, validation and testing sets.
The chosen values of the parameters are listed in Table I.

The values of the spatio-temporal weighting factor ↵ and of
the neighborhood radius � were optimized for each cell and
are listed in Table II, for a number of neighbors from 27 to
46.

B. Prediction results

Fig. 2 shows the prediction accuracy on the test set for each
regression method. The figure clearly shows that the NN is not
an accurate method, probably due to an insufficient training
set size, whereas the other algorithms often have a similar
performance. The reason is that the cell load can be easily

Parameter Value Description

�R [1.637e-6, 0.074]⇤ Ridge regularization parameter
�L [1e-06, 4.665e-6]⇤ Lasso regularization parameter
�R,E [0, 1.105e-5]⇤ Ridge regularization (elastic net)
�L,E [0, 4.665e-6]⇤ Lasso regularization (elastic net)
C [0.22, 34.081]⇤ SVR linear kernel penalization term
Nt 200 Number of RF trees
� 10�3 NN learning rate
Niter 104 Maximum NN iterations
" 10�10 NN convergence tolerance
⇤These parameters were optimized for each cell.

TABLE I
PARAMETERS USED IN THE SIMULATION.

Cell id ↵ � Number of neighbors

2583 0.25 2 27
4241, 4856 2.25 3 25
5060 0.09 2 46
5091 0.19 2 28
5259, 5262, 6065 0.12 2 37
7724 0.19 2 28

TABLE II
OPTIMAL NEIGHBORHOOD DEFINITION FOR EACH CELL.

predicted in most cells, and therefore the differences among
different algorithms are minimal. On the other hand, in cells
with poor prediction accuracy different methods show some
performance difference. This reveals that, when the behavior of
the load in a cell is less predictable, the prediction performance
can be improved using different algorithms and additional
context information. Indeed, the simple linear regression and
ridge regression have a slightly better performance in cells
2583, 4241 and 5091, which are all located in peripheral
areas of the city, close to major traffic roads or hubs (Via
Gianbellino for cell 2583, the A1 highway for cell 4241, and
Linate airport for cell 5091). In locations like these, with high
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Prediction methods comparison
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grid of square cells with 200 m sides (which makes d0 = 200
m in Eq. (1)) in the city of Milan, Italy, for the last two months
of 2013. The data had a sampling period of 10 minutes (i.e.,
T = 600 s in Eq. (1)). The normalized mean internet usage is
overlaid on a map of the city in Fig. 1.

For computational reasons, we only predicted the load of a
small but representative subset of cells, namely, the cells with
id 2583, 4241, 4856, 5060, 5091, 5259, 5262, 6065 and 7724.
These cells were selected because they are placed in different
areas of the city and they show different traffic patterns. In
particular, cells 2583 and 4241 have an average traffic that is
close to the average traffic for the whole city, cells 5060, 5091
and 7724 show very high peak usage, and cells 4856, 5259,
5262 and 6065 have a very high average traffic.

The metric we chose for the results was the coefficient of
determination R

2 [22], which is a commonly used metric in
the regression literature, and gives an indication of how well
the regression model describes the observed data.

A. Parameter optimization

All the parameters of the prediction algorithms were opti-
mized by exhaustive search with 10-fold cross-validation, after
dividing the dataset into training, validation and testing sets.
The chosen values of the parameters are listed in Table I.

The values of the spatio-temporal weighting factor ↵ and of
the neighborhood radius � were optimized for each cell and
are listed in Table II, for a number of neighbors from 27 to
46.

B. Prediction results

Fig. 2 shows the prediction accuracy on the test set for each
regression method. The figure clearly shows that the NN is not
an accurate method, probably due to an insufficient training
set size, whereas the other algorithms often have a similar
performance. The reason is that the cell load can be easily

Parameter Value Description

�R [1.637e-6, 0.074]⇤ Ridge regularization parameter
�L [1e-06, 4.665e-6]⇤ Lasso regularization parameter
�R,E [0, 1.105e-5]⇤ Ridge regularization (elastic net)
�L,E [0, 4.665e-6]⇤ Lasso regularization (elastic net)
C [0.22, 34.081]⇤ SVR linear kernel penalization term
Nt 200 Number of RF trees
� 10�3 NN learning rate
Niter 104 Maximum NN iterations
" 10�10 NN convergence tolerance
⇤These parameters were optimized for each cell.

TABLE I
PARAMETERS USED IN THE SIMULATION.

Cell id ↵ � Number of neighbors

2583 0.25 2 27
4241, 4856 2.25 3 25
5060 0.09 2 46
5091 0.19 2 28
5259, 5262, 6065 0.12 2 37
7724 0.19 2 28

TABLE II
OPTIMAL NEIGHBORHOOD DEFINITION FOR EACH CELL.

predicted in most cells, and therefore the differences among
different algorithms are minimal. On the other hand, in cells
with poor prediction accuracy different methods show some
performance difference. This reveals that, when the behavior of
the load in a cell is less predictable, the prediction performance
can be improved using different algorithms and additional
context information. Indeed, the simple linear regression and
ridge regression have a slightly better performance in cells
2583, 4241 and 5091, which are all located in peripheral
areas of the city, close to major traffic roads or hubs (Via
Gianbellino for cell 2583, the A1 highway for cell 4241, and
Linate airport for cell 5091). In locations like these, with high
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Prediction methods comparison

Fig. 3. Performance of the prediction algorithms for different neighborhood
definitions.

mobility and bursty traffic, the benefit of combining spatial
and temporal information is intuitive, and the performance
improvement can be seen in Fig. 3. While only temporal or
spatial data is sufficient in the highly predictable cells, the
same 3 cells mentioned above show a marked improvement
in the R

2 score when spatio-temporal data are considered
jointly in the prediction. It is also worth noting that the
use of temporal indicators does not result in a significant
improvement by itself, but only when combined with the
spatio-temporal neighborhood data.

The most accurate prediction methods are also the simplest:
both training and parameter optimization for the linear, ridge,
lasso and elastic net algorithms were significantly faster than
for RF, SVR and NN. This offsets the increased complexity
due to the bigger size of the neighborhood due to the inclusion
of the spatial dimension in its definition.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we applied several regression methods taken
from the literature, combined with joint spatio-temporal in-
formation with indicators, to predict the future cell load on a
10 minute scale. We used real data from the Telecom Italia
network in Milan to perform the training and evaluation of the
different methods.

Our work proves the usefulness of joint spatio-temporal
information in the most difficult prediction scenarios, con-
firming the importance of context information for network
optimization.

Future work on the prediction methods might consider the
introduction of new indicators which could capture network-
specific dynamics, along with a more in-depth study of the
effect of the neighborhood size on the prediction accuracy.

Another possible avenue for future research is a more sys-
tematic study of the dataset, applying the methods described
in this work to all the cells in the dataset and correlating other
geographical features with the prediction accuracy, as well as
using them as additional indicators.
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Cells 2583, 4241, 5091 are close 
to major traffic roads or hubs

Spatio-temporal information 
improves prediction accuracy
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Conclusions

§Real data from Telecom Italia network

§Simplest and most efficient methods give 
best results

§Spatio-temporal information improves 
prediction in high mobility scenarios

§Future work
§ More systematic study of the dataset
§ Introduction of new indicators
§ In-depth study of  neighborhood size impact



CS
C	
–
SM

C	
Gr
ou

p
M

OC
AS

T,
 M

ay
4t

h , 
20

17

Cell Traffic Prediction Using Joint 
Spatio-Temporal Information 
Enrico Lovisotto, Enrico Vianello, Davide Cazzaro, 

Michele Polese, Federico Chiariotti, Daniel Zucchetto, 
Andrea Zanella, Michele Zorzi

Dept. of Information Engineering,
University of Padova, Italy

May 4th, 2017   


