

End-to-end performance of next generation mmWave networks

Objective

mmWave communications are an enabler of future mobile networks

- user experience depends on end-to-end performance
- mobility and interaction with higher layers are still unexplored

	UE
<u></u>	
:	APP
	TCP/IP
1	
	RRC
	PDCP
	RLC
	MAC
	PHY
j L	
· _ · _	

Mobility in mmWave networks

Dual Connectivity architecture for LTE and mmWave

- PDCP layer aggregation
- Track the UE SINR across multiple mmWave eNBs
- Provide more stable connectivity
- Fast mobility procedures
- Fast switching
- Secondary Cell Handover

First evaluation of handover in cellular mmWave with dynamic models + e2e protocol stack + DC architecture

Michele Polese, University of Padova (michele@polese.io)

Research activities in collaboration with Michele Zorzi (supervisor), Andrea Zanella, Marco Giordani (UNIPD), Sundeep Rangan, Marco Mezzavilla and Menglei Zhang (NYU Wireless) and Rittwik Jana (AT&T Research Labs). See **mmwave.dei.unipd.it** for a list of references.

- like stacks
- Dual Connectivity
- Low-latency MAC & PHY

Transport protocols for mmWave

- Smarter mobility Lower latency
- Smaller throughput

Challenges: blockage and high variability

bufferbloat

Time diversity

HARQ and RLC retransmissions

ns-3 simulator

End-to-end simulator with full TCP/IP and 3GPP-

■ 3GPP 6-100 GHz channel model – NYU channel model – tracing-based model

Path diversity

Multipath TCP over LTE or mmWave

A **reliable subflow** with low bandwidth helps more than a high capacity, unreliable path

Coming soon: cross-layer approach