TCP in 5G mmWave networks

Time and path diversity

Michele Polese*, Rittwik Jana ♢, Michele Zorzi*

Objective

Evaluate **MP-TCP** on mmWave + LTE networks
- What is the best combination of paths?
- Which congestion control (CC) algorithm to use?

mmWaves and TCP

Challenges: blockage and high variability

Example: throughput over time in NLOS condition

- Exploit **path diversity** with multi-connectivity
- **Design** goals of MP-TCP
 1. Improve throughput
 2. Be fair with other TCP flows
 3. Avoid congestion
- **Congestion control algorithms**
 - **Coupled** – OLIA, BALIA – the congestion window of all the paths are **dependent** on each other (NewReno based)
 - **Uncoupled** – each path is **independent**, any TCP CC (e.g., CUBIC) can be used

Multipath TCP

Path choice

Dashed vs solid lines at large distance, **mmWave 28 GHz + LTE** performs better than mmWave 28 GHz + mmWave 73 GHz

A **reliable subflow** with low bandwidth helps more than a high capacity, unreliable path

CC algorithms

Red vs blue lines the uncoupled CC with CUBIC performs better than coupled BALIA. BALIA may perform worse than the single path TCP

State of the art CC algorithms do **not** meet the **MP-TCP design goals** in a mmWave scenario

Performance evaluation

Evaluate **MP-TCP** on mmWave + LTE networks

- **What is the best combination of paths?**
- **Which congestion control (CC) algorithm to use?**

References

[1] M. Polese, R. Jana, M. Zorzi, *TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP*, accepted for presentation at the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)

*University of Padova, ♢AT&T Labs-Research

Contacts: (polesemi, zorzi)@dei.unipd.it, rjana@research.att.com