

# **Problem Definition**

- *Problem:* smartphone's charge hardly reaches the end of the day
- *Fact:* power optimization is based on simple discharging time prediction
- Observation: battery consumption is userdependent  $\rightarrow$  prediction models are general but inaccurate



**IPARTIMENTO** 

)i ingegneria

DELL'INFORMAZIONE

Make your smartphone **learn your usage** pattern day by day and adapt its prediction lifetime accordingly!

# Machine Learning

Data easily accessible from smartphones



Location



Movements

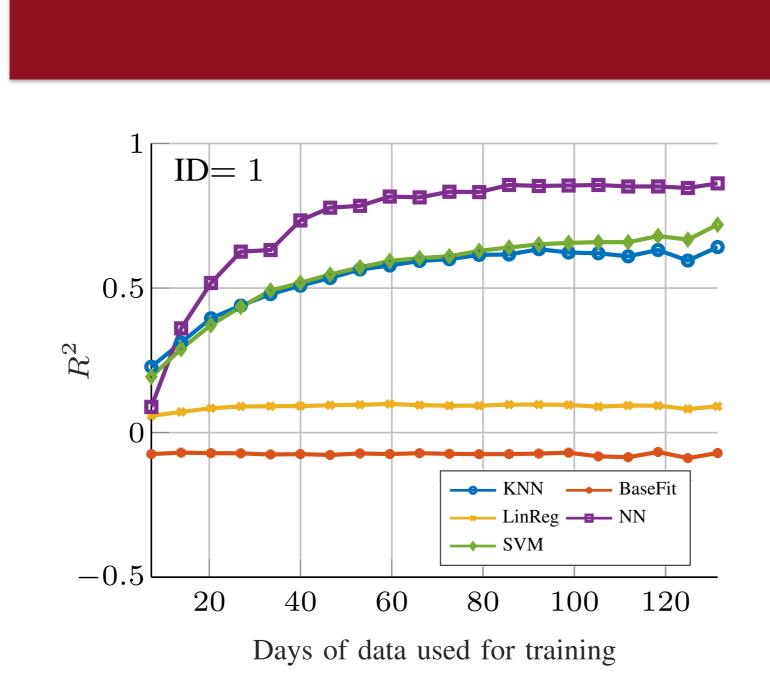


Calendar



Time of the day




Battery level



Apps installed\*

*Privacy matters:* the machine learning algorithm can work locally on the user device  $\rightarrow$  no leakage of private info!

- LifeMap project
- 6 months of data for 6 users
- Granularity of 10 minutes



- **NN**: deep neural network (our proposal) • **BaseFit**: current approach (linear interpol.) • LinReg: linear regression

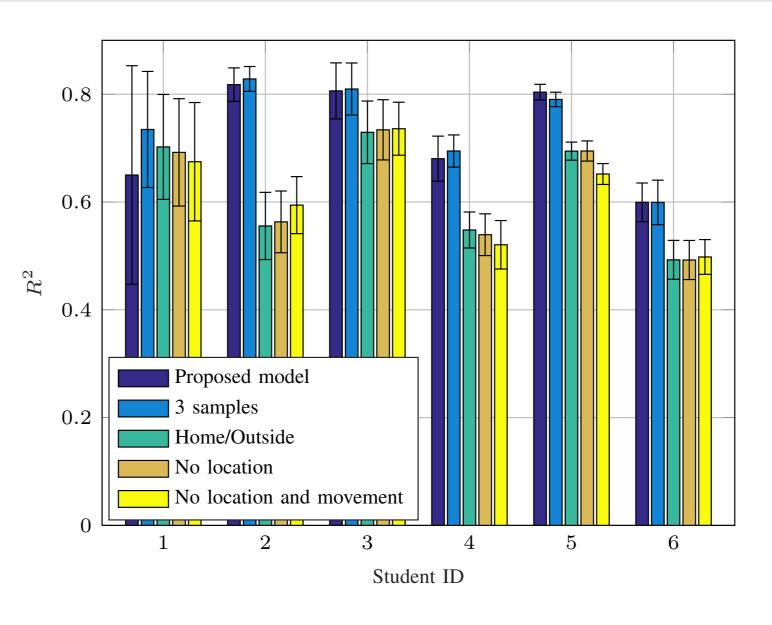
- KNN:
- SVM:

\*Not used in this experiment

# A Deep Neural Network Approach for Customized Prediction of Mobile Devices Discharging Time

Mattia Gentil, Alessandro Galezzi, Federico Chiariotti, Michele Polese, Andrea Zanella, Michele Zorzi University of Padova, Italy - email: {gentilma, galeazzial, chiariot, polesemi, zanella, zorzi}@dei.unipd.it

## Dataset

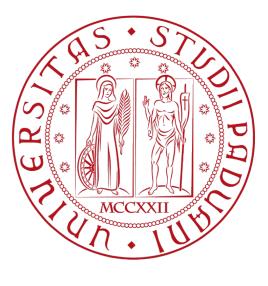

J. Chon and H. Cha, "LifeMap: A Smartphone-Based Context" Provider for Location-Based Services," IEEE Pervasive Computing, vol. 10, no. 2, pp. 58–67, Apr. 2011

### Structure after model selection:

- 4 fully connected layers of size 200, 150, 100, 50
- Hyperbolic tangent activation function
- Parameter learning via Limited-memory BFGS algorithm

*Output*: estimated discharging time

# Main results




### Prediction performance

k-nearest neighbors regressor support vector machine

### Sensitivity to data accuracy

- Three additional past battery samples
- Binary location (home/outside)
- No location
- No location and no info on movement



# **Deep Neural Network**

|             |     | Test user |         |        |        |        |        |
|-------------|-----|-----------|---------|--------|--------|--------|--------|
|             | ID  | 1         | 2       | 3      | 4      | 5      | 6      |
| I FAID USET | 1   | 0.643     | -0.0733 | -0.293 | -2.130 | -3.508 | 0.642  |
|             | 2   | -0.268    | 0.645   | -0.581 | -4.083 | -6.479 | -0.048 |
|             | 3   | -0.195    | -0.074  | 0.687  | -2.490 | -3.865 | 0.514  |
|             | 4   | -0.121    | -0.068  | -0.220 | 0.664  | -3.173 | 0.714  |
|             | 5   | -0.110    | -0.067  | -0.223 | -1.715 | 0.703  | 0.729  |
|             | 6   | -0.070    | -0.101  | -0.423 | -0.335 | 0.670  | 0.761  |
|             | All | 0.308     | 0.371   | -0.167 | -4.693 | -3.725 | -0.711 |

### Specificity

**Confusion matrix** of the R<sup>2</sup> coefficient among different users  $\rightarrow$  trained models are strictly personal and depend on the habits of each specific user

### Low complexity:

- Training on one day data  $\rightarrow$  2 s
- Prediction  $\rightarrow$  100  $\mu$ s (CPU time in **desktop PC**)

*Future work:* design pre-training algorithms implement and test on real devices