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Outline

• Introduction

• A case for end-to-end, full-stack evaluations

•Architectures for 5G mmWaves

•End-to-end protocols for mmWaves

•Data-driven 5G network optimization

•Conclusions and research directions
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3GPP NR: novelties 
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Subframe – 1 ms

Examples of slot numbers with 
different subcarrier spacing
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3GPP NR: timeline

Goal: deployment by 2020

Non Stand-alone
specifications

Dec. 2017 June 2018

Stand-alone
specifications

5G phase 1 5G phase 2

March 2020

Release 15 Release 16
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3GPP NR: mmWaves in cellular networks
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3GPP NR Release 16 will support frequencies up to 52.6 GHz

Z. Pi and F. Khan, "An introduction
to millimeter-wave mobile 

broadband systems," in IEEE 
Communications Magazine, vol. 

49, no. 6, pp. 101-107, June 2011.

5G 
increases the

datarate [Gbps] latency [ms]

5G 
decreases the
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3GPP NR: challenges for mmWaves
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UAV with mmWave radio

Ground station

blockage
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End-to-end design and performance: why?

• Sometimes, link-level is enough
• Real networks, however, have several 

components in-between the user, the link 
and the content he/she needs

PHY
MAC
RLC

TCP/IP
APP

PDCP
RRC

Core network

Internet
TCP/IP

APP
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end-to-end, system-level design & 

evaluation of 5G mmWave networks7
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The Architecture
System Level Design of
5G mmWave Networks

The Protocols
End-to-End and Cross-Layer 

Analysis of 5G mmWave Networks

The Intelligence
Data-Driven 5G Networks 

Optimization
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The tool: ns-3 mmWave module

Channel model

Application and 
network stack

3GPP cellular stack 3GPP cellular stack

Application and 
network stack

Packet
Propagation

Fading Beamforming

InterferenceSINR

Error model
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https://github.com/nyuwireless-unipd/ns3-mmwave
https://github.com/signetlabdei/ns3-mmwave-iab

https://github.com/signetlabdei/quic
https://github.com/signetlabdei/mmwave-psc-scenarios
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System Level Design of 5G 
mmWave Networks
Multi connectivity, beam management and Integrated Access and 
Backhaul
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System-level challenges at mmWaves
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Issues: high propagation loss and blockage

Large antenna arrays increase 
the link budget, but the power 

is focused on narrow beams

Ultra-dense deployments

Provide backhaul to 
all the base stations

2

1
High number 
of handovers

3

Need to track 
the narrow 

beams when 
moving 
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System level solutions at mmWaves
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Integrated 
Access and 
Backhaul

Low cost, high 
density mmWave

deployments

1
Multi-connectivity

Low-latency, highly 
reliable handovers

2

3

Beam management
Seamless tracking
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• Goal: design a system resilient to fluctuations and outages

• Contribution: 

Multi-connectivity architecture
to combine sub-6 GHz and mmWave benefits

Mobility management
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Results: latency with TCP traffic

• No handover (always keep the same BS)

• Single connectivity (traditional HO architecture)

• Multi connectivity (fast handovers – no service interruption)Th
e 

Ar
ch

it
ec

tu
re

Proposed 
solution
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Integrated Access and Backhaul

• Goal: provide wireless backhaul to ultra-dense mmWave
networks

• Contributions:

IAB module for ns-3 mmWave

Analysis of IAB end-to-end performance

Distributed path selection policies
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3GPP Work Item for Release 16
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MAC
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PHYPHY

Adaptation

RLC
MAC
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MAC

PHY PHY
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UE
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MT
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End-to-end Performance for IAB
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Impact of synchronous vs. bursty traffic

Webpage loading time with 
browsing model

Throughput with full buffer source
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• Goal: perform directional initial access and tracking

• Contributions: 

Study of 3GPP NR beam management schemes

Analysis of their performance with design insights

Beam management in 3GPP NR

28 GHz
omnidirectional range

28 GHz
directional range

Th
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1. Beam sweeping

2. Beam measurement

3. Beam determination

4. Beam reporting

Beam Management in NR
The 3GPP has specified a set of procedures for the control of 

multiple beams at mmWave frequencies  which are categorized 
under the term BEAM MANAGEMENT 
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Initial Access in a standalone deployment

RACH preamble

gNB UE

SS Burst

UE decides which 
is the best beam

SS Blocks to 
get RACH 
resources UE receives RACH 

resource allocation

Beam sweep 
and 
measurement

Beam 
determination

Beam reporting
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Reactiveness: how much time 
does it take to perform IA?

Accuracy: what is the probability 
of receiving an SS block?

Accuracy-reactiveness tradeoff in NR
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e 
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Number of antennas at gNB and UE

gNB
density

Number of SS 
blocks per burst
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Beam management for UAVs
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Proposed location-based beam management for UAVs
Experimental evaluation



End-to-End and Cross-Layer Analysis of 
5G mmWave Networks
TCP issues in mmWave networks
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TCP issues in mmWave networks
Th

e 
Pr

ot
oc

ol
s PHY

MAC

RLC

TCP

APP

PDCP

SDAP

End-to-end data plane

IP

mmWave channel: volatile, highly variable 
capacity, large bandwidth

Link view
• Retransmissions
• Reordering
• Buffering

How do these 
components interact?

Host-to-host “abstract” view
• Congestion and flow control
• Retransmissions
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LOS
NLOS

After transition from LOS

time

LOS

time

LOS
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RLC buffer 
occupancy 

congestion 
window 

Large buffer 
Bufferbloat
High latency

Small buffer
Buffer overflow
Low throughput

a) DUPACK retx (CW/2)
b) RTO retx (CW=1)

time
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Possible solutions

• Goal: improve TCP end-to-end performance on mmWaves

• Contributions:
Edge deployments: a shorter control loop, to react faster

CC algorithms: faster window ramp-up mechanisms

Exploit multiple paths: mobility management or MP-TCP

milliProxy: cross-layer approach to better control the TCP sending rate
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Flow 
Buffer

Flow window 
management module

ACK management 
module

milliProxy instance

server
UE

end-to-end flows

server

UE

flow 
Buffer

flow window 
management module

ACK management 
module

milliProxy instance
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milliProxy – a TCP proxy for mmWaves

Reduce buffering latency + increase goodput
▪ Transparent to the end-to-end flow

▪ Installed in the gNB – or at the edge

▪ Cross-layer approach
▪ Per-UE data rate
▪ RLC buffer occupancy
▪ RTT estimation

▪ Modular
▪ Plug-in different

flow control
algorithms
(inspired to [1])

Flow 
Buffer

Flow window management 
module

ACK management module

milliProxy instance

server
UE

end-to-end flows

server

UE

flow 
Buffer

flow window management 
module

ACK management module

milliProxy instance
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[1] M. Casoni et al., “Implementation and validation of TCP options and congestion control algorithms for ns- 3,” in Proc. WNS3, 2015
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milliProxy – flow control

▪ Interaction with the TCP sender

▪ TCP sending rate is min(CW,ARW)

▪ milliProxy modifies the ARW in the 
ACKs, according to the flow control
policy used

▪ Bandwidth-Delay 
Product (BDP)
based ARW = BW*RTT

▪ More conservative 
ARW = 
min([RTT*PHYrate]-B, 0) 

Congestion window (computed 
by the sender)

Advertised window (receiver’s 
feedback sent on ACK packets)
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Results: scenario with many LOS/NLOS 
transitions

Throughput Latency

Latency reduction w milliProxyThroughput gain w milliProxy
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Data-Driven 5G Networks Optimization
Machine Learning at the Edge
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• Goal: deploy intelligent and data-driven techniques in 5G 
networks

• Contributions: 
Mobile-edge controller-based architecture

Data-driven dynamic clustering of base stations

Prediction accuracy of the number of UEs per base station

Machine learning at the edge
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Data collection
Policy enforcement

PHY-high
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SDAP
RRC

RU

CU CU CU

RU RU

RAN Controller

CU CU CU

RAN Controller

RU RU RU
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CU
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RAN Controller

Cloud Network Controller
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Fast 
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Data-driven clustering example
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Base station 
locations

Each color is a 
cluster
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Prediction of the number of UEs

• Spatial correlation (cluster- vs local-based) is more 
impactful than temporal correlation

• Exploit geographic constraints on mobility flows

• When considering all the 472 eNBs (in 22 clusters):
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53% RMSE reduction 5% RMSE reduction when increasing 𝑊
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(b) Low number of users

Fig. 4: Example of predicted vs true time series, for L = 3 (i.e., 15 minutes
ahead), W = 3 and the cluster-based GPR on two base stations for cluster 0.

W for the two most accurate methods, the local-based BRR

and the cluster-based GPR. It can be seen that, with respect

to Fig. 3a, where W is fixed, the difference is limited for the

GPR and BRR (i.e., below 5%), while it is more considerable

for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a

joint prediction based on the cluster) is more impactful on

the RMSE than the temporal one (i.e., the past history used

as a feature). Indeed, while the RMSE for the GPR and

BRR improves by up to 5% by varying W , it decreases by

up to 50% when comparing the local- and the cluster-based

methods. The target of the prediction is indeed the number of

users at a cell level (contrary to prior work which focused on

single-user mobility prediction [16]), thus the geography of

the scenario in which the base stations are deployed actually

limits the possible movements of users across neighboring

cells. These constraints on the mobility flow translate into a

spatial correlation among the number of users in neighboring

base stations at time t and at time t + L .

However, there are still some limitations to the accuracy of

the prediction. Fig. 4 reports an example of the true and the

predicted (for L = 3, i.e., 15 minutes) time series for two

1 2 3 4 5 6 7 8 9
6

8

10

12

14

16

Lag L [5 minutes]

R
M

S
E
σ̂

Cluster-based GPR

Local-based BRR

Fig. 5: Average cluster-based GPR vs local-based BRR for all the San
Francisco base stations.

Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

different base stations, with a low and high number of users.

It can be seen that the true time series exhibit daily patterns,

but also a high level of noise. As a consequence, the predicted

values manage to track the main trend of the true time series,

but do not represent the exact value of the number of users in

all cases. This is more noticeable with a low number of UEs,

as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach

on the sample cluster, we selected the best performing local-

and cluster-based methods, i.e., respectively, the BRR and the

GPR, and performed the prediction on all the base stations of

the San Francisco area, once again clustered according to the

approach in [1]. The average RMSE over all the base stations

is reported in Fig. 5. The cluster-based method consistently

outperforms the local-based one. The reduction in the average

RMSE over all the clusters Ecl ust er s[σ̂] is 18.3% for L =

Approach based 
on the proposed 
architecture
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Conclusions

• System–level, end-to-end approach throughout all the 
topics

• Considered different components of a complex system 
and introduce novel contributions for
• Architectures
• Protocols
• Intelligence

• Thorough and realistic performance evaluation

• End-to-end, full-stack analysis may uncover 
unexpected behaviors
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Future work

• Future research will still be focused on a system-level 
approach, combined with testbeds and experimental 
results

• What happens when you consider increasingly complex 
systems?
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