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ABSTRACT
The recently proposed QUIC protocol has been widely adopted at
the transport layer of the Internet over the past few years. Its design
goals are to overcome some of TCP’s performance issues, while
maintaining the same properties and basic application interface.
Two of the main drivers of its success were the integration with the
innovative Bottleneck Bandwidth and Round-trip propagation time
(BBR) congestion control mechanism, and the possibility of mul-
tiplexing different application streams over the same connection.
Given the strong interest in QUIC shown by the ns-3 community,
we present an extension to the native QUIC module that allows
researchers to fully explore the potential of these two features. In
this work, we present the integration of BBR into the QUIC module
and the implementation of the necessary pacing and rate sampling
mechanisms, along with a novel scheduling interface, with three
different scheduling flavors. The new features are tested to verify
that they perform as expected, using a web traffic model from the
literature.
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1 INTRODUCTION
Over the past few years, the development of new communication
technologies, with new capabilities and new kinds of applications,
has led to a resurgence of research on the transport layer [22]: the
Quick UDP Internet Connections (QUIC) [11] protocol, which has
become a strong competitor to the Transmission Control Protocol
(TCP) by promising to overcome its main shortcomings, is one of
the most interesting developments in the field. Congestion control
has also returned to being an active topic of research, with the
development of the Bottleneck Bandwidth and Round-trip prop-
agation time (BBR) mechanism [4], which aims at fully utilizing
capacity while maintaining low latency.
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The QUIC protocol and the BBR congestion control mechanism
were both developed by Google, and are currently used together in
a number of commercial products, such as the Chrome browser. Ac-
cording to the estimates provided in [16], 7% of the overall Internet
traffic and 30% of Google’s egress traffic is currently generated by
QUIC connections, although the Internet Engineering Task Force
(IETF) standardization process is still ongoing [11]. The design ra-
tionale behind QUIC was to mitigate some of TCP’s main issues.
The first and foremost of these is Head-of-Line (HOL) blocking,
which heavily affects HyperText Transfer Protocol (HTTP)/2 Web
traffic. HOL occurs because of the strict requirement for in-order
delivery, so that packets cannot be released to the application if
an earlier one is missing, even if the packets are logically indepen-
dent and belong to different application-level objects [9]. Like the
pre-existing Stream Control Transmission Protocol (SCTP), QUIC
solves the issue by defining different streams and requiring in-order
delivery only for packets belonging to the same stream.

In order to maximize compatibility and avoid issues with mid-
dlebox support [20], QUIC is deployed in user space and not in the
Operating System (OS) kernel, and its packets are encapsulated in
standard User Datagram Protocol (UDP) packets. The protocol also
includes full end-to-end encryption, as well as minor improvements
in the connection establishment and selective acknowledgment
handling. The performance of different versions of QUIC has been
studied in a number of recent papers [5, 13, 24], with experiments
in real networks based on different open source implementations
of QUIC. Our native implementation of the protocol in the ns-3
simulator [7] was based on the design of the ns-3 TCP implemen-
tation [21], as the two protocols have similar functions and share
several common elements.

In this work, we present a further extension of the QUIC mod-
ule1 for ns-3, which significantly extends its functionality and the
possibilities for research on the protocol. In particular, we added
three features to the implementation, which should cover some of
the most interesting research topics on QUIC:

• We implemented pacing for QUIC and integrated the BBR
congestion control mechanism from [12] with the protocol,
allowing researchers to test the combination of QUIC and
BBR, which is becoming commonplace on the Internet.

• We implemented a realistic HTTP traffic model from the
literature [23], which is more recent than that used in the
current ns-3 implementation and should be a better model
of contemporary web browsing.

1The source code is available at https://github.com/signetlabdei/quic and on the ns-3
app store.



• We generalized the scheduling among streams, allowing
users to choose between the standard First In First Out (FIFO)
packet queue, a Prioritized First In First Out (PFIFO) im-
plementation that always prioritizes streams with a lower
identification number when sending data, and an Earliest
Deadline First (EDF) implementation that allows applications
to set per-stream latency bounds and delivers first the pack-
ets whose deadline is the closest. The classes implementing
these packet schedulers inherit a standard interface, which
can be further extended to consider different scheduling
policies.

In the remainder of the paper, we first provide an overview of
the main features of the QUIC protocol and its ns-3 implementation
in Sec. 2. We then describe BBR and its implementation in Sec. 3.
Sec. 4 discusses the issues of modeling HTTP/3 traffic and possi-
ble innovation, presenting our implementation of a well-known
traffic model and several packet scheduling policies and their im-
plementation in the QUIC module. Finally, Sec. 5 concludes the
paper.

2 THE QUIC PROTOCOL
The QUIC protocol implements additional transport layer and secu-
rity functionalities as an overlay of UDP. It was initially designed
by Google, in 2013 [16], and later the IETF has promoted an effort
to make it a standardized protocol. So far, different Internet Drafts
have been under discussion to fully develop the core transport layer
features [11], end-to-end security [25], congestion control and re-
covery procedures [10], and the bindings to an extension of HTTP
(named HTTP/3.0) [2]. In the following, we define a connection as
a transport layer flow with two fixed endpoints, and a stream as
an application-layer data object or flow with self-contained and
independent content. The same application can generate multiple
streams, e.g., a webpage with multiple HTTP objects, but should
only open one connection to avoid connection setup overheads and
congestion control issues. QUIC allows streams to be multiplexed
on the same connection while maintaining separate receiver buffers,
reducing the delivery delay in case of errors.

QUIC provides in a single layer some of the functionalities that
are otherwise split into TCP and the Transport Layer Security (TLS)
stack. Besides transport layer features, it implements authentica-
tion and encryption of the packet with TLS 1.3 [25]. This prevents
common networking attacks, such as packet injection and eaves-
dropping. Moreover, it makes it harder to perform traffic analysis
in the network.

From a transport layer point of view, QUIC inherits and improves
several TCP design choices [22]:

• the integrationwith TLS allows a reduction in the connection
establishment latency, as the protocol and the cryptographic
handshakes can be performed in the same exchange (con-
trary to TCP+TLS, where the connection is first established
and then encrypted). The connection setup can thus be com-
pleted in a single Round Trip Time (RTT), if the endpoints
have never exchanged cryptographic information in previ-
ous connections, or even with a single transmission (0-RTT
handshake), already encrypted;

• QUIC still infers the conditions of the end-to-end connec-
tion using acknowledgments (duplicate or not), and adapts
using a congestion-window-based mechanism. However, it
improves TCP’s retransmission and loss recovery process, as
the sender is able to distinguish out-of-order and lost pack-
ets, and the Selective Acknowledgment (SACK) signaling
can contain more blocks than in TCP [11]. Furthermore, as
will be discussed later in this paper, QUIC can feed the con-
gestion control mechanism with additional information, if
compared to TCP, thus enabling a more prompt and precise
estimation of the connection status. Notably, the receiver
explicitly signals the delay between the reception of a packet
and the transmission of the associated acknowledgment, for
a better estimation of the RTT;

• with QUIC, several streams (with data and control) can be
multiplexed on a single connection. The multiplexing ex-
ploits a new packet structure, which combines frames of
different streams into a single packet. Control frames can
also be appended, to carry, for example, acknowledgments or
flow control information, at the stream or connection level.
The stream concept seamlessly supports HTTP streaming
and objects, with the possibility of a one-to-one mapping be-
tween application and transport layer streams. This benefits
dynamic applications with different reliability requirements
on different portions of the data to be transmitted, as dif-
ferent streams can be configured to deliver frames reliably,
in-order, or not. As discussed in [22], HTTP/3.0 streams on
QUIC do not suffer from the HOL blocking issue that impacts
the performance of HTTP/2.0 on TCP, where a single packet
loss prevents TCP from delivering the packets of any other
stream to the application.

Finally, besides transport and security features, QUIC provides a
mechanism to increase the stability of end-to-end connections with
respect to changes in the topology or the configuration of the lower
layers of the protocol stack. This is done through a connection-level
identifier, which makes it possible to maintain the same established
connection even in case of—for example—mobility in cellular and
Wi-Fi networks that updates the IP address [11].

2.1 The QUIC ns-3 module
QuicSocketBase (which extends QuicSocket), the main class of
the QUIC implementation, models the basic functionalities of a
QUIC socket, like in the TCP implementation. Each client will
instantiate a single QuicSocketBase object, while the server will
fork a new socket for each incoming connection. The QUIC socket
is bound to an underlying UDP socket through a QuicL4Protocol
object, which handles the initial creation of the QuicSocketBase
object, triggers the UDP socket to bind and connect, and handles the
delivery of packets between the UDP socket and QuicSocketBase.

A QuicSocketBase object receives and transmits QUIC packets
and acknowledgments, accounts for retransmissions, performs flow
and congestion control at the connection level, takes care of the
initial handshake and exchange of transport parameters, and han-
dles the life cycle and the state machine of a QUIC connection. An
instance of the QuicSocketBase class holds pointers to multiple
other relevant items, including:
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Figure 1: Operation of the BBR algorithm [22]

• the socket transmission and reception buffers, implemented
by QuicSocketTxBuffer and QuicSocketRxBuffer, respec-
tively;

• a QuicSocketState object, extending TcpSocketState [6]
with additional variables that are used by the QUIC state
machine and congestion control;

• an object extending the TcpCongestionOps class, which per-
forms the congestion control operations and provides a basic
compatibility with the TCP congestion control implementa-
tions, as we will discuss later.

QUIC streams are modeled by the QuicStreamBase class, which
extends the basic QuicStream class. It buffers application data, per-
forms stream-level flow control, and delivers the received data to
the application. Similarly to the full socket, a QuicStreamBase
object also has pointers to transmission and reception buffers,
which are implemented by the QuicStreamTxBuffer and Quic-
StreamRxBuffer classes.

Multiple QuicStreamBase objects are connected to a single Quic-
SocketBase through an object of the QuicL5Protocol class. A
QuicSocketBase holds a pointer to a QuicL5Protocol object, and
the latter contains a vector of pointers to multiple QuicStreamBase
instances. The QuicL5Protocol class creates and configures the
streams, and takes care of delivering packets or frames to be trans-
mitted and received across the streams and the socket.

The instantiation of a QUIC socket is simplified by the presence
of the QuicHelper class, which extends InternetStackHelper to
add QUIC to the supported protocols.

The congestion control for a QuicSocketBase instance can (i) be
in legacy mode, i.e., the congestion control algorithms implemented
for TCP drive the congestion window of the QUIC connection as
well; or (ii) usemore refined algorithms, which exploit the additional
information that the QUIC socket provides, and develop conges-
tion control methods for QUIC only. The QUIC implementation
currently includes one such algorithm, namely, the basic NewReno-
like congestion control scheme specified in the Draft [10].

The compatibility with legacy TCP congestion control algo-
rithms is achieved by having a TcpCongestionOps instance as
the basic congestion control object in QuicSocketBase. Then, we
introduced a new class QuicCongestionControl, which extends
TcpNewReno.2 QuicCongestionControl features additional meth-
ods that inject additional information specified by theQUIC Internet
Draft in the congestion control algorithm (e.g., the transmission of a
packet, more refined information on the RTT) if needed. When the
congestion control algorithm is set in QuicSocketBase (i.e., after

2As expected, TcpNewReno extends TcpCongestionOps itself.

the socket is created by QuicL4Protocol), the SetCongestion-
ControlAlgorithm checks if the specific algorithm extends Quic-
CongestionControl, and in this case sets the m_quicCongestion-
ControlLegacy flag to false. Otherwise, the latter is set to true and
the legacy mode is activated. Then, every time the socket needs
to trigger the methods of the congestion control algorithm, e.g.,
when an acknowledgment is received, or a Retransmission Timeout
(RTO) expires, it will check whether the operations are in legacy
mode to call the relevant methods.

We refer the reader to [7] for additional details on the ns-3 QUIC
implementation.

3 BBR CONGESTION CONTROL IN QUIC
Google’s BBR [4] is a new congestion control mechanism, which
tries to explicitly estimate the Bandwidth-Delay Product (BDP)
and stay close to the connection’s optimal operating point, defined
as full capacity exploitation with minimum RTT [15]. In other
words, the objective of BBR is to transmit data at the highest pos-
sible rate without creating a queue. BBR uses a capacity-based
philosophy, measuring capacity directly like the older Westwood
mechanism [18], and uses pacing as its main limit to the sending
rate, keeping a larger congestion window to allow for capacity
variations. The protocol has four phases, which are represented in
Fig. 1:

• In the Startup phase, BBR uses a gain of 2/ln(2) to quickly
ramp up the sending rate until the actual bandwidth is dis-
covered. This can create a queue of up to twice the BDP,
resulting in an RTT increase of twice the minimum RTT of
the connection.

• In the Drain phase, BBR uses the inverse of the startup gain
to reduce the queue before starting normal operation.

• The bandwidth probe phase is BBR’s normal mode of opera-
tion: in this phase, BBR is driven by its capacity estimates.
The estimates of the capacity are passed to amax filter, whose
output is the protocol’s bandwidth estimate. This optimistic
estimation mechanism is not without issues, as we will dis-
cuss later, but it allows BBR to fully exploit the capacity in
stable channels. The protocol then sets the pacing rate to
match the estimated bandwidth and the congestion window
to twice the BDP, ensuring that the reaction to capacity drops
will not be too slow. Since capacity estimates are limited by
the pacing rate, BBR periodically probes the bandwidth by
temporarily setting the pacing rate to 1.25 times the mea-
sured bandwidth. In this way, it builds up a queue and gets
more accurate estimates of the capacity, identifying large
upswings in the capacity. After one RTT, the protocol spends



another RTTwith a reduced pace of 0.75 times the bandwidth
in order to reduce the standing queue.

• The RTT probe phase is repeated periodically, with a default
period of 10 s. During this phase, BBR updates its estimate
of the connection’s minimum RTT. To do so, it reduces the
congestion window to 4 packets for a short period, flushing
the queue at the bottleneck and ensuring that the estimate
of the minimum RTT is unaffected by self-queuing delay.
Naturally, other flows sharing the bottleneck buffer might
still bias the estimate. After an RTT probe, operation resumes
normally.

Since it does not interpret loss as a signal of congestion, relying on
the BDP estimate to avoid buffer overflows, BBR does not reduce
its sending rate as a consequence of packet loss. This gives it an
advantage over loss-based mechanisms in naturally lossy connec-
tions such as wireless and mobile systems. BBR can also make full
use of Explicit Congestion Notification (ECN), as well as a seamless
integration with QUIC’s SACK and delay estimation mechanisms.

3.1 Implementation in ns-3
In the following, we describe the integration of the BBR ns-3 imple-
mentation by Jain et al. [12] in the QUIC module. Since the QUIC
module’s codebase is compatible with the releases after ns-3.29,
while the BBR is based on the older ns-3.27 release, the original
implementation had to be adapted to the changes made in newer
releases. In particular, recovery operations are implemented sepa-
rately from the QUIC socket class, with a more modular approach.
The mechanics of congestion window updates are also slightly
different. The updated BBR code was added to the QUIC module.

The implementation of BBR also involved significant changes
to the QuicSocketBase class in order to add the features that BBR
needs for delivery rate estimation and pacing. Pacing is the most
relevant feature used by BBR, as adjusting the pacing rate is the
main way the mechanism performs congestion control. It is used
to send data at a constant rate, matching the estimated capacity
and avoiding packet bursts that may cause overflow in the bot-
tleneck link buffer. As the QUIC module is based on the existing
TCP implementation design, the new QUIC pacing also follows
the TcpSocketBase code structure, which includes pacing since
the ns-3.28 release. A Timer object is started whenever a packet
is sent by the socket, and it is set to expire after a time given by
𝐿/𝐵pace, where 𝐵pace is the pacing rate and 𝐿 is the packet size. The
SendPendingData method of QuicSocketBase checks the pacing
timer state before sending a packet: if the timer is expired, the
packet is sent straight away, and the timer is restarted, while if it
is still running a call to SendPendingData is scheduled upon timer
expiration. In order to comply with the QUIC specification [10],
pacing is temporarily disabled before sending packets following
Tail Loss Probe (TLP) or RTO events.

Another change to the QUIC module to support BBR is the
implementation of rate measurements through the RateSample
interface, as BBR needs capacity estimates for both its delivery rate
estimation and the detection of the application-limited state. Unlike
in the TCP implementation, the rate estimation is performed by the
QuicSocketTxBuffer, which updates the rate sample whenever
packets are removed from the buffer to be sent or acknowledgments

are processed. A new RateSample is generated when new ACKs
are processed and passed along to the congestion control class.

In the TCP implementation, the TcpTxBuffer::OnApplication
Write method detects the BBR application-limited state upon the
insertion of data in the Transmission Buffer by the application layer.
The connection is then considered to be application limited if the
data in the application buffer is not sufficient to create a Maximum
Transmission Unit (MTU)-sized packet. However, the QUIC ver-
sion is less straightforward: the application data passes through
both the QuicStreamTxBuffer and the QuicSocketTxBuffer be-
fore being sent. Hence, we used a different approach: the connec-
tion is considered application-limited if the amount of available
application data in the QuicSocketTxBuffer when sending the
packet is lower then a full MTU. This check is implemented in the
QuicSocketBase::SendDataPacket method.

As mentioned in Sec. 2, the QUIC module supports both legacy
TcpCongestionOps inherited from the TCP implementation and
protocol specific QuicCongestionOps objects for managing con-
gestion control. Since the BBR implementation we adapted requires
the changes to the interface that we discussed above, QuicBbr
is designed as a QUIC-specifc congestion control to preserve the
self-contained nature of the module. The higher flexibility of the
QuicCongestionOps interface, which considers a wider set of con-
gestion events such as ACK reception, packet losses and packet
sending, allowed us to implement BBR with no other changes to
QuicSocketBase, except for the introduction of pacing and rate
sampling discussed above.

3.2 Performance evaluation
In the following, we propose a few examples to show that BBR
behaves correctly in the QUIC implementation. All the simulation
scenarios are based on the TcpVariantsComparison and QuicVa-
riantsComparison example classes, which use a backed-up source
and a dumbbell topology with one or two senders on one side of the
bottleneck link and an equivalent number of receivers on the other.
The local links have a 10 Mb/s capacity and 45 ms delay, while
the bottleneck link has a negligible 0.01 ms delay and its capacity
is a variable parameter. The total minimum RTT is then approx-
imately 180 ms. As BBR is designed to converge to Kleinrock’s
optimal operating point [4] as long as the model parameters are
correctly estimated, the measured RTT is supposed to be close to
the minimum RTT for the connection in the absence of cross-traffic
flows.

First, we consider a constant capacity scenario, in which the
bottleneck bandwidth is set to 4 Mb/s. The simulation lasts 30
seconds, and a single sender/receiver pair communicates over the
bottleneck. Fig. 2 illustrates the behavior of both the TCP and
QUIC implementations of BBR. The different colors in the plot
backgrounds describe the different modes in BBR: STARTUP (red),
DRAIN (green), PROBE_BW (blue), and PROBE_RTT (cyan).

The behavior of BBR is almost the same in TCP and QUIC, with
some minor differences due to the underlying protocols. The con-
gestion window is set to twice the BDP as soon as the drain phase
ends, and a slight overestimation of the capacity leads BBR to slowly
build up a queue, until it becomes limited by the congestion win-
dow (or the buffer is emptied during an RTT probe). The max filter



(a) TCP BBR (b) QUIC BBR

Figure 2: Time evolution of bytes in flight, CWND, pacing rate, RTT,
BBR modes (background colors) and queue size at the bottleneck
node for TCP and QUIC.

slightly overestimates the available capacity, leading BBR to be-
coming limited by the congestion window instead of the pacing,
so the RTT is approximately twice the minimum connection delay.
However, this behavior is consistent with the behavior of actual
BBR implementations under even very low values of jitter.

Since QUIC has a slightly different delay measurement, its capac-
ity estimate is slightly higher, which leads the protocol to sending
data slightly faster than TCP, but the difference is minor.

We then consider another scenario, in which 20 seconds after
the simulation begins the bottleneck capacity is increased from 2 to
4 Mb/s, and then decreased back to 2 Mb/s 25 seconds later. Fig. 3a
shows how BBR quickly adapts to the available capacity thanks to
the pacing gain cycle. As expected, BBR can quickly fill the capacity
when it increases. Conversely, Fig. 3b shows the behavior when
capacity decreases: it takes a while for the BBR max filter to discard
the previous maximum capacity, but the protocol eventually adapts
to the change. As for the previous results, this behavior is consistent
with the TCP implementation.

Finally, we evaluate the fairness of the protocol by using a con-
stant 4Mb/s bottleneck capacity, with 2 flows sharing the bottleneck.
The first sender immediately starts the connection, while the second
waits 15 seconds. The behavior of the flows in terms of pacing rate
and RTT is shown in Fig. 4: as expected, the two flows converge to
an equal share of the available capacity after an initial transition.

(a) Increasing bottleneck capacity.

(b) Decreasing bottleneck capacity.

Figure 3: Effects of variation in the bottleneck capacity on QUIC
BBR.
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Figure 4: Behavior of two QUIC BBR flows sharing the same bottle-
neck.

4 HANDLING HTTP/3.0 TRAFFIC
The second contribution of this paper is an improved interface
for the handling of HTTP/3.0 traffic. HTTP is the most dominant
application-level protocol for web browsing, and has recently ex-
panded to other kinds of traffic (e.g., video and audio streaming). It
works on a request and response pattern: in a simple scenario, the
HTTP client requests a web page or object and the HTTP server
responds with the requested data. HTTP web pages are composed
of two kinds of objects: the main object, which contains the basic
HyperText Markup Language (HTML) code of the page, and the
embedded objects, which may be images, videos or other contents
present in the page. Pages might contain multiple main objects,
as they can contain third-party scripts (e.g., social media sharing
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Figure 5: The HOL problem with TCP and HTTP/2, solved by QUIC
thanks to the support of multiple independent streams.

buttons). Each main object specifies its embedded objects, which
will be received by the client.

When a client requests a web page, all the objects discussed
above are downloaded after a single HTTP GET request, but they
might not need to be displayed at the same time. HTTP/1.1, the
first version of the protocol to be widely adopted, did not allow
multiplexing: a new TCP connection was opened for each object,
each with a separate congestion control state. The competition
between multiple flows with the same endpoints was inefficient,
and version 2 of the protocol, introduced in 2015 as RFC 7540 [1],
uses a single TCP connection to transmit all the objects in a page.
This solves the problem in lossless connections, but introduces
HOL in lossy ones: since all the packets for multiple objects are
multiplexed in the same TCP connection, the in-order delivery
requirement means that the loss of a single packet would stop
all the other objects from being released to the application. This
can have a significant impact in mobile and wireless connections,
where measurements show that the page load times of HTTP/2.0
are similar to those of HTTP/1.1 [9].

For this reason, HTTP/3.0 has been proposed as a standard
draft [3]: the multiplexing features of HTTP/2.0 are maintained, but
the protocol runs over QUIC, sending objects on different streams.
Since in-order delivery is only guaranteed between frames belong-
ing to the same streams, the HOL issue is solved. Fig. 5 shows an
example of this: while HTTP/1.1 introduces competition between
flows and HTTP/2.0 suffers from HOL, HTTP/3.0 can multiplex
multiple objects and handle them separately by using different
streams.

The ns-3 simulator currently lacks a source model that mimics
HTTP/2.0 or HTTP/3.0 streams, and this has prevented, so far, stud-
ies of QUIC performance with realistic applications. Therefore, we
consider in this paper the implementation of an HTTP model from
[23]. The model specifies the traffic parameters, listed in Table 1,
for the number and size of the main and embedded objects in a
webpage, as well as user based parameters such as reading time.

The model is implemented in the GenericHTTPVariables class,
and the parameters of the model are implemented as attributes.
These attributes are initialized to the value given in the paper, but
can be re-configured by the user.

4.1 Scheduling policies for QUIC
In a QUIC flow, data from different streams are multiplexed into the
same connection, with a common congestion control. Since sender-
side buffering may occur, the protocol needs a scheduling policy to
decide which frame to send first: the QUIC protocol draft [11] does
not specify a stream prioritization technique, aside from mandating
that control frames in stream 0 must be sent first, but states that
implementations should provide ways to perform it. If we examine
an HTTP/3.0 page load, we can see that scheduling is of the utmost
importance: the main object and the basic elements of the page
should be loaded first to reduce page load times, while complex
scripts and large media objects can wait until the rest of the page
is already visible. Dependencies should also be considered [19], as
objects can not be loaded before their dependencies. Perceived load
time is a key Quality of Experience (QoE) metric, and techniques
such as the prioritization of areas of the page that a user is likely to
look at first can significantly improve it [14]. Using the appropriate
scheduler can significantly increase the delay performance [17],
but the topic is still relatively new and unexplored.

The previous version of the QUIC module only considered a
simple FIFO scheduler, in which frames from all streams, except
for stream 0, were put in the same queue. The scheduler was imple-
mented directly in the QuicSocketTxBuffer class, which made it
hard to modify without affecting the buffer. In the new version of
the module, we introduced a QuicSocketTxScheduler interface,
decoupling the scheduling from the buffer implementation and
allowing users to implement their own schedulers transparently. In
fact, the actual list of QuicSocketTxItem objects to transmit is now
part of the scheduler class: the QuicSocketTxBuffer::Addmethod
is now a wrapper that creates a QuicSocketTxItem from the frame
and calls QuicSocketTxScheduler::Add. The scheduler object can
then use any priority structure to decide which frame to send
when the QuicSocketTxScheduler::GetNewSegment method is
called. Frames from stream 0 are maintained in a separate list in
QuicSocketTxBuffer, as the QUIC specification states that they
should always be sent first independently of the scheduling policy.
Another common feature of all scheduling algorithms should be
the use of a FIFO policy between frames from the same stream, as
the in-order delivery requirements makes other choices inherently
less efficient.

The type of scheduler each QUIC socket uses can be chosen by
setting the SchedulingPolicy attribute of the QuicSocketBase
class, and the default is the simple FIFO implementation. Besides the
default QuicSocketTxFifoScheduler class, we provide two other
schedulers, which implement the PFIFO and EDF policies. The for-
mer, which is implemented in the QuicSocketTxPfifoScheduler
class, uses a priority queue to prioritize streamswith the lowest iden-
tifying number: subframes from stream 1 are sent first, and if there
are none, the scheduler checks for subframes from stream 2 and so
on. The latter is implemented in the QuicSocketTxEdfScheduler
class, and allows the application to set latency limits for each



Table 1: HTTP Model Parameters, from [23]

Parameter Mean Standard Deviation Maximum Fitting Curve
Main Object Size 31561 B 49219 B 8 MB Weibull (𝜆 = 28242.8, 𝑘 = 0.814944)

Number of Main Objects 1.2 2.63 212 LogNormal (𝜇 = 0.473844, 𝜎 = 0.688471)
Embedded Object Size 23915 B 128079 B 8 MB LogNormal (𝜇 = 9.17979, 𝜎 = 1.24646)

Number of Embedded Objects 31.93 37.65 1920 Exponential (𝜆 = 0.03132)
Reading Time 39.7 s 324.92 s 10000 s LogNormal (𝜇 = −0.495204, 𝜎 = 2.7731)
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Figure 6: Delay for different streamswith the FIFO and PFIFO sched-
ulers.

stream using the QuicSocketBase::SetLatency method. In this
case, each QuicSocketTxItem is assigned a deadline when it is
added to the scheduling queue, and the frames with the lowest
deadline are served first.

In both cases, retransmissions present an issue: since retransmit-
ted packets may contain frames from different streams, there are
two possible ways to handle them. If we choose a "retransmissions
first" policy, lost packets are placed in a separate queue with the
highest priority (after stream 0 frames), so that they are retransmit-
ted as soon as possible. A second possibility is to fragment each lost
packet back into separate frames, subjecting them to the standard
scheduling policy. This policy can help avoid the HOL issue in
higher-priority streams. The FIFO and EDF schedulers can switch
between these two modes using the RetxFirst attribute, which
is present in both scheduler classes (but not in the FIFO scheduler
class, for which the two options are equivalent).

4.2 Performance evaluation
Efficient scheduling among HTTP streams was one of the main rea-
sons for the development of QUIC. As we discussed above, the order
in which objects in a webpage are downloaded can significantly
affect the load time of the main elements, and thus the QoE of the
user. This issue particularly affects low-bandwidth connections, as
a lower capacity will mean a more noticeable delay. To show the
influence of the queuing policy in QUIC, we choose such a scenario,
with a client requesting a page from a server over a connection
with a fixed capacity of 1 Mb/s and a minimum RTT of 10 ms. In
this case, we use the standard TcpNewReno congestion control.

We use the HTTP application above to generate webpages, send-
ing main objects first and their related embedded objects later. We

assume that the application does not optimize the order of the ob-
jects: naturally, this is not always the case in real applications, but
one of the great advantages of HTTP/3.0 is that it gives websites a
simple way to allocate priorities. We assume that the application
sends main objects and embedded objects below 12 kB, i.e., text
and basic elements of the page, on stream 1, while larger embed-
ded objects such as scripts or large images and videos are sent on
stream 2.

Fig. 6 shows a boxplot of the load times for 100 randomwebpages
in this scenario, using the model described above. The difference
between a FIFO policy, which sends the embedded objects in the
random order the application put them in, and a PFIFO policy,
which prioritizes stream 1, is remarkable. It is easy to see that the
basic elements of the webpage are loaded much faster under PFIFO,
with a small additional delay for larger objects.

This simple example is a showcase of the possible advantages
of transport layer scheduling among different streams, but the re-
search on the subject is open. In our view, the ns-3 implementation
provides a flexible and easy way to test different scheduling strate-
gies in a replicable setting.

5 CONCLUSIONS AND FUTUREWORK
In this work, we present some extensions to the ns-3 QUIC module,
which make it more flexible and allow researchers to investigate
more complex and realistic scenarios. Our improvements consist
of the integration of the BBR code from [12] in the module, which
required the implementation of pacing and rate estimation in the
module, and of the new scheduling interface, which allows users to
extend a generic scheduler interface and specify different policies
to prioritize streams.

Future work on the module will involve full alignment with
the latest version of the QUIC draft, along with the implementa-
tion of multipath capabilities [8] for the protocol, for which the
standardization process is also ongoing.
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