
Intelligent networks with Open RAN
Challenges and opportunities

Michele Polese
Institute for the Wireless Internet of Things

Northeastern University
m.polese@northeastern.edu

with Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, Tommaso Melodia

Partially supported by NSF Grants CNS-1925601, CNS-2120447, and CNS-2112471 and ONR Grant N00014-20-1-2132

openrangym.com

mailto:m.polese@northeastern.edu

- a reference architecture for programmable NextG

Service Management and Orchestration Framework

Non-real-time RIC

Near-real-time RIC

O-CU (control plane) O-CU (user plane)

O-DU

O-RU

O-eNB

RAN
O1 interface O1A1 interface

E2 interface

E2

E2

E1

interface
F1-c interface F1-u interface

Open Fronthaul interfaces

1. Open, standardized
interfaces

2. Disaggregated RAN

3. Open-source
contributions

4.RAN Intelligent Controllers

Intelligent Control Loops
Control and learning objective Input data Timescale

Service Management and Orchestration (SMO)
non real-time RIC

A1

CU

DU

E2

F1

Open FH

O1

RU

Mobile devices

gNB

Policies, models, slicing Infrastructure-level
KPIs

Non real-time
> 1 s

User Session Management
e.g., load balancing, handover

CU-level KPIs
e.g., number of

sessions, PDCP traffic

Near real-time
10-1000 ms

Medium Access Management
e.g., scheduling policy, RAN

slicing

Radio Management
e.g., resource scheduling,

beamforming

Device DL/UL Management
e.g., modulation, interference,

blockage detection

Architecture

MAC-level KPIs
e.g., PRB utilization,

buffering

Real-time
< 10 ms

MAC/PHY-level KPIs
e.g., PRB utilization,
channel estimation

I/Q samples
Real-time
< 1 ms

Scale

> 1000
devices

> 100
devices

> 100
devices

~10
devices

1 device

Near real-time
RIC

Near real-time
10-1000 ms

Currently supported by O-RAN

For further study or not supported

Open Challenges toward Intelligent Open RAN

Need large-scale heterogeneous datasets

Need testing of closed-loop control without compromising network
performance

Need algorithms that generalize to different scenarios and conditions

Need large-scale heterogeneous datasets

Experimental platforms for wireless AI

PAWR platforms and Colosseum can be used
to collect datasets at scale

Tools are available for large-scale data collection
in cellular networks: SCOPE platform
https://github.com/wineslab/colosseum-scope

https://advancedwireless.org
https://northeastern.edu/colosseum/

https://advancedwireless.org/
https://northeastern.edu/colosseum/

6

Experimental Research at Northeastern

�� � �� � �� �� �� �� ��

��
��

��
��

��
��

��
�� �� �� �� �� �� �� ��

�� � �� � �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� ��

�� � �� � �� �� �� �� ��

��
��

��
��

��
��

��
�� �� �� �� �� �� �� ��

�� � �� � �� � �� �� �� �� �� ��
�� �� �� �� �� �� �� ��

10
9

12
11

14
13

16
15

18
17

20
19

22
21

24
23

26
25

28
27

30
29

32
31

34
33

36
35

38
37

40
39

42
41

44
43

46
45

48
47

50
49

52
51

54
53

56
55

58
57

60
59

62
61

64
63

2
1

4
3

6
5

8
7

USRP X310USRP N210

Server Rack
Radio Rack

5 ft

Arena @ NEU Colosseum @ NEU

POWDER

Salt Lake City, UT
Software defined
networks and
massive MIMO

COSMOS

West Harlem, NY
AERPAW
Raleigh, NC

Rural Broadband
Platform

TBDMillimeter wave and
backhaul research Coming late 2020

PAWR Platforms

Develop and validate innovative spectrum solutions in heterogeneous environments

X-Mili @ NEU mmWave/THz @ NEU

UAS Lab @ NEU

An Experiment's Journey

The same experiment (and software) can be seamlessly deployed in the different
testbeds

• Initial design and testing at-a-scale on Colosseum w/ different scenarios

• Validate on real-world indoor environment on Arena

• Experiment into the wild on city-scale platforms

Test at-a-scale
on emulated

scenarios

Validate in
real wireless
environment

Test large-
scale

capabilities

Colosseum @ Northeastern

8

Colosseum is the world most powerful hardware-in-the-loop network emulator

• 256 software-defined radios
• 25.6 GHz of emulated bandwidth, 52 TB/s RF data
• 21 racks of radios, 171 high-performance servers w/
CPUs, GPUs
• Massive computing capabilities (CPU, GPU, FPGA):
• > 900 TB of storage
• 320 FPGAs
• 18 10G switches
• 19 clock distribution systems
• 52 TB/s of digital RF data

Create and test complex
5G scenarios

Colosseum Architecture

9

Management
Infrastructure

USRP X310

Container

SRN (x 32)

USRP X310

Container
USRP X310

Container

Co
lo

ss
eu

m
 Q

ua
dr

an
t

USRP X310

Container

SRN (x 32)

USRP X310

Container
USRP X310

Container

USRP X310

Container

SRN (x 32)

USRP X310

Container
USRP X310

Container

USRP X310

Container

SRN (x 32)

USRP X310

Container
USRP X310

Container

TGEN Traffic Generator

MCHEM Channel Emulator
RF Scenario Server

FPGA
Fabric

Traffic Network Fabric

Resource Manager

Experiment Website

Gateways

Network services

Management Network

NAS (Storage)

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

ATCA 3671

Open Challenges

Need testing of closed-loop control without compromising network
performance

OpenRAN Gym
A toolbox for Intelligent O-RAN

www.openrangym.com

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “OpenRAN Gym: An Open Toolbox for Data Collection and Experimentation with AI in O-RAN,” in Proc. IEEE WCNC Workshops, 2022

Collect datasets at scale on
virtual RF scenarios

Design, train, and package ML
solutions for O-RAN

xApp
RIC interface

ASN.1
Encoding
Decoding

Data

Control

Shared Data
Layer APIs

Databas
e

queries

DRL Agent

Autoencoder TF Agent
Encoder

…

Actor
network

…

…

Value
network

…
Ob
serv
atio
n

Action

Test and refine on experimental
wireless platforms

2260 10000 17460 25000 29820

�0.22

�0.24

�0.26

�0.28

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

En
tr

op
y

re
gu

la
ri

za
tio

n
lo

ss

(a) Entropy regularization loss.

2260 10000 17460 25000 29820
0

0.2

0.4

0.6

0.8

1

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

A
ve

ra
ge

re
w

ar
d

(b) Reward.

Fig. 8: Metrics for the training on the offline dataset and the online
training on Colosseum and Arena. The Arena configuration uses LTE
band 7. Notice that the Arena deployment considers 3 users per base
station, contrary to the 6 users per base station of Colosseum, thus the
absolute average reward decreases.

100 200
kN3ky

Rd9ey

kkey

�+iBQMb

h`
�B

MB
M;

bi
2T

b

100 200

�+iBQMb

Fig. 9: Distribution of the actions during the training on the offline
dataset and the online training on Colosseum. The offline training stops
at step 17460.

6 ONLINE TRAINING FOR DRL-DRIVEN XAPPS

The last set of results presents an analysis of the tradeoffs
associated with training DRL agents on a live network
in an online fashion. These include the evaluation of the
time required for convergence, the impact of the explo-
ration process on the RAN performance, and the benefits
involved with this procedure. To do this, we load on the
online-training xApp a model pre-trained on the of-
fline dataset with the slice-based traffic profile. The same
model is used in the DRL-reduced-actions agent. We deploy
the online-training xApp on a ColO-RAN base station
and further continue the training with online exploration,
using the uniform traffic profile (with the same constant bi-
trate traffic for each user). Additionally, we leverage the con-
tainerized nature of ColO-RAN to deploy it on Arena [11], a
publicly available indoor testbed, and perform training with
one SDR base station and three smartphones.

Convergence. Figures 8 and 9 show how quickly the pre-
trained agent adapts to the new environment. In particular,
Fig. 8a reports the entropy regularization loss as a function
of the training step of the agent. This metric correlates with
the convergence of the training process: the smaller the
absolute value of the entropy, the more likely the agent has
converged to a set of actions that maximize the reward in
the long run [30]. We stop the training when this metric
(and the average reward, Fig. 8b) plateaus, i.e., at step 17460
for the offline training, step 29820 for the online training
on Colosseum. The loss remains stable when transitioning
from the Colosseum to the Arena online training, while it

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1
Better

Per-user throughput [Mbit/s]

C
D

F

OT, beginning

OT, mid

OT, end
TR, sched-slicing

Fig. 10: CDF of the throughput for the eMBB slice during the online
training (OT) and with the trained agent (TR) with the uniform traffic
profile.

0 50 100 150 200 250

2

3

4

Time [s]Th
ro

ug
hp

ut
[M

bi
t/

s]

Trained model During training

Fig. 11: eMBB slice throughput during training and with the trained
model.

increases (in absolute value) when switching traffic profile
at step 17460. This shows that the agent can better general-
ize across different channel conditions than source traffic
profiles. The same trend can be observed in the average
reward (Fig. 8b), with the difference that the transition from
Colosseum to Arena halves the reward (as this configuration
features 3 and not 6 users for each base station). While the
Colosseum online training requires 30% fewer steps than the
initial offline training, it also comes with a higher wall-clock
time. Indeed, offline exploration allows the instantiation of
multiple parallel learning environments. Because of this,
the Colosseum DGX supports the simultaneous exploration
of 45 network configurations. Instead, online training can
explore one configuration at a time, leading to a higher wall-
clock time.

Figure 9 reports the evolution of the distribution of
the actions chosen by the DRL agent for the Colosseum
offline and online training. Three histograms for steps 2260,
17460 (end of offline training) and 29820 (end of online
training) are also highlighted in the plot on the right. During
training, the distribution of the actions evolves from uni-
form (in yellow) to more skewed, multi-modal distributions
at the end of the offline training (in orange) and online
training (in red). Additionally, when the training on the
new environment begins, the absolute value of the entropy
regularization loss increases (Fig. 8a), and, correspondingly,
the distribution starts to change, until convergence to a new
set of actions is reached again.

Impact of online training on RAN performance.

Achieving convergence with a limited number of steps
is particularly important for online training, as the per-
formance of the RAN may be negatively affected during
the training process. Figure 10 reports the CDF for the
user throughput during training and after, when the agent
trained online is deployed on the sched-slicing xApp.
The performance worsens when comparing the initial train-
ing step, which corresponds to the agent still using the
actions learned during offline training, with an intermediate

9

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

CD
F

Online agent
Offline agent

(a) Slice-based source traffic.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

CD
F

Online agent
Offline agent

(b) Uniform source traffic.

Fig. 12: Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

step, in which it is exploring random actions. Once the agent
identifies the policies that maximize the reward in the new
environment (in this case, with the uniform source traffic
profile), the throughput improves. The best performance,
however, is achieved with the trained agent, which does not
perform any exploration. Figure 11 further elaborates on this
by showing how the online training process increases the
throughput variability for the two eMBB users. Therefore,
performing online training on a production RAN may be
something a telecom operator cannot afford, as it may
temporarily lead to disservices or reduced quality of service
for the end users. In this sense, testbeds such as Colosseum
can be an invaluable tool for two reasons. First, they provide
the infrastructure to test pre-trained ML algorithms—and
ColO-RAN enables any RAN developer to quickly onboard
and test their xApps in a standardized O-RAN platform.
Second, they allow online training without affecting the
performance of production environments.

Adaptability. The main benefit of an online training
phase is to allow the pre-trained agent to adapt to updates in
the environment that are not part of the training dataset. In
this case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Figure 12 compares the cell throughout
for the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this
traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs
to the eMBB slice (whose users have a traffic one order of
magnitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit/s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more balanced
PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to
develop, for example, smart scheduling algorithms that can

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17
18 9 23

12 15 23
6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
RB

)

0 0.5 1

RR
RR

RR
RR

RR
W

F
RR

RR
PF

RR
W

F
RR

RR
W

F
W

F
RR

W
F

PF
RR

PF
RR

RR
PF

W
F

RR
PF

PF
W

F
RR

RR
W

F
RR

W
F

W
F

RR
PF

W
F

W
F

RR
W

F
W

F
W

F
W

F
W

F
PF

W
F

PF
RR

W
F

PF
W

F
W

F
PF

PF
PF

RR
RR

PF
RR

W
F

PF
RR

PF
PF

W
F

RR
PF

W
F

W
F

PF
W

F
PF

PF
PF

RR
PF

PF
W

F
PF

PF
PF

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17
18 9 23

12 15 23
6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
RB

)

Slice-based traffic

Uniform traffic

Fig. 13: Probability of selecting a slicing/scheduling combination for
the online-trained agent with two different source traffic patterns. For
each tuple, the first element refers to the PRB (scheduling) for the eMBB
slice, the second for the MTC slice, and the third for the URLLC slice.

alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-RAN
as a platform to train and test O-RAN ML solutions in a
controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span
the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [31–33].

Several papers review the potential and challenges of
ML for wireless networks, discussing open issues and po-
tential solutions. Kibria et al. highlight different areas in
which ML and big data analytics can be applied to wireless
networks [33]. Sun et al. [34] and Gunduz et al. [35] review
the key learning techniques that researchers have applied
to wireless, together with open issues. Similarly, Chen et
al. focus on artificial neural network algorithms [36]. Other
reviews can be found in [16, 37]. While these papers present
a clear overview of open problems associated with learning
in wireless networks, and sometimes include some numeri-
cal evaluations [3, 38], they do not provide results based on
an actual large-scale deployment, as this paper does, thus
missing key insights on using real data, with imperfections,
and on using closed-loop control on actual radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [39]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [40]. Others apply ML to 5G network
management and KPM prediction [41–43]. These papers,
however, do not close the loop through the experimental
evaluation of the control action or classification accuracy

10

11

OpenRAN Gym – A Toolbox for Intelligent O-RAN

• O-RAN-compliant near-real-time RIC running on Colosseum (ColO-RAN)

• RAN framework for data-collection and control of the base stations (SCOPE)

• Programmable protocol stacks (based on srsRAN at this time)

• Publicly-accessible experimental platforms (e.g., Colosseum, Arena, PAWR platforms)

Mobility, path loss, fading, interference

Colosseum

Data Collection and Control Framework

SCOPE

D
ata C

ollection
M

odule

C
ontrol A

PIs

RAN E2
Termination

O-RAN Control Architecture

ColO-RAN Near-RT RIC

E2

E2 Term
ination

E2 M
anager

E2 R
outing M

anager

R
edis D

atabase

Docker Cluster

xA
pp

xApp SDK

xA
pp

xA
pp

Experimental Platforms for Data Collection and Testing

Arena
PAWR Platforms

Other

Softwarized RAN

srsRAN /
OpenAirInterface

PHY
MAC
RLC
PDCP
RRC

12

OpenRAN Gym and ns-3

• Developed a custom E2 termination for ns-3

• ns-3 provides functional RAN environment and connects to an O-RAN-compliant
near-RT RIC

• To be included in the O-RAN SC

ns-3 NetDevices
MmWaveEnbNetDevice
LteEnbNetDevice

RAN-side E2
termination

ns-3-O-RAN-E2
(ns-3 wrapper on

e2sim)

gNB or eNB running in the
simulation container

SCTP
Near-RT RIC

RIC k8s cluster

OpenRAN Gym on PAWR Platforms

13

Results are consistent across very different platforms with heterogeneous environments

Periodic change of slicing resources xApp closed-control loop

L. Bonati, M. Polese, S. D'Oro, S. Basagni, T. Melodia, "OpenRAN Gym: AI/ML Development, Data Collection, and Testing for O-RAN on PAWR Platforms,"
arXiv:2207.12362 [cs.NI], July 2022.

ColO-RAN – ML development and testing for O-RAN

M. Polese, L. Bonati, S. D'Oro, S. Basagni, and T. Melodia, "ColO-RAN: Developing Machine Learning-based xApps for Open RAN Closed-loop Control on Programmable Experimental Platforms", IEEE TMC, to appear

Need algorithms that generalize to different scenarios and conditions

ColO-RAN xApp

RIC interface

ASN.1
Encoding
Decoding

To/from E2
Msg Routing

Data

Control

Shared Data Layer
APIs

Database
queries

DRL Agent

Autoencoder TF Agent
Encoder

…

Actor
network

…

…

Value
network

…

Observat
ion

Action

Generate a compressed representation of the RAN Exploit it to generate control actions in the network

ColO-RAN xApps

Control slicing and scheduling of the RAN

• sched xApp – select scheduling policy for a specific slice

• sched-slicing – jointly select scheduling policy and slicing for a base
station

15

xApp Functionality Input
(Observation)

Output (Action) ML Models Utility (Reward)

sched-
slicing

Single-DRL-agent for joint
slicing and scheduling
control

Rate, buffer size,
PHY TBs (DL)

PRB and
scheduling policy
for each slice

DRL-base, DRL-reduced-
actions,
DRL-no-autoencoder

Maximize rate for eMBB, PHY TBs
for MTC, minimize buffer size for
URLLC

sched Multi-DRL-agent per-slice
scheduling policy selection

Rate, buffer size,
PRB ratio (DL)

Scheduling policy
for each slice

DRL-sched Maximize rate for eMBB and MTC,
PRB ratio for URLLC

online-
training

Train DRL agents with
online exploration

Rate, buffer size,
PHY TBs (DL)

Training action
(PRB and
scheduling)

Trained online by the
xApp itself

Based on specific training goals

TABLE 1: Catalogue of developed xApps.

ered in this paper are shown in Table 1. The DRL agent of
sched-slicing jointly selects the slicing and scheduling
policy for a single base station and all slices. For this
xApp we trained three DRL models: baseline (DRL-base), an
agent that explores a reduced set of actions (DRL-reduced-
actions) and an agent where input data is fed directly to
the agent (DRL-no-autoencoder). The sched xApp includes
three DRL agents that select in parallel the scheduling policy
for each slice (eMBB, MTC, and URLLC). Each agent has
been trained using slice-specific data.

4.2 Training the DRL Agents
DRL agents are trained on the dataset described in Sec-
tion 4.3, where at each training episode we select RAN
data from different base stations to remove dependence on
a specific wireless environment (Section 6) and facilitate
generalization.

Following O-RAN specifications, training is performed
offline on the dataset. In our case, this is achieved by
randomly selecting instances in which the network reaches
the state s1 that results from the combination of the previous
state s0 and the action to explore a0.

In our experiments, the actor and critic networks of all
DRL agents have been implemented as two fully-connected
neural networks with 5 layers with 30 neurons each and an
hyperbolic tangent activation function. The encoder consists
of 4 fully-connected layers with 256, 128, 32 and 3 neurons
and a rectified linear activation function. For all models, the
learning rate is set to 0.001.

Finally, as illustrated in Table 1, we also consider the
case of online training where the online-training xApp
supports training a DRL agent using live data from the
RAN and performing exploration steps on the online RAN
infrastructure itself. While this is not recommended by O-
RAN [5], it specializes the trained model to the specific
deployment. We will discuss the tradeoffs involved in this
operation in Section 6. online-training leverages Ten-
sorFlow CheckPoint objects to save and restore a (par-
tially) trained model for multiple consecutive rounds of
training. In this way, the training services in the xApp can
restore an agent trained on an offline dataset using it as
starting point for the online, live training on the RAN.

4.3 Large-scale Data Collection for ColO-RAN
To train the DRL agents for the ColO-RAN xApps we
performed large-scale data collection experiments on Colos-
seum. The parameters for the scenario are summarized in
Table 2.

Parameter Value

Number of
nodes

NBS=7, NUE=42

RF parameters DL carrier fd = 0.98 GHz, UL carrier fu = 1.02
GHz, bandwidth B=10 MHz (50 PRBs)

Schedulers RR, WF, PF
Slices eMBB, MTC, URLLC (2 UEs/BS/slice)
Traffic profiles Slice-based: 4 Mbit/s/UE for eMBB, 44.6

kbit/s/UE for MTC, 89.3 kbit/s/UE URLLC
Uniform: 1.5 Mbit/s/UE for eMBB, MTC, URLLC

TABLE 2: Configuration parameters for the considered scenario.

The large-scale RF scenario mimics a real-world cellular
deployment in downtown Rome, Italy, with the positions of
the base stations derived from the OpenCelliD database [26].
We instantiated a softwarized cellular network with 7 base
stations through the SCOPE framework. Each base station
operates on a 10 MHz channel (50 PRBs) which can be
dynamically assigned to the 3 slices (i.e., eMBB, MTC,
URLLC). Additionally, we considered two different TGEN
traffic scenarios: slice-based traffic and uniform traffic. In
slice-based traffic, users are distributed among different
traffic profiles (4 Mbit/s constant bitrate traffic to eMBB
users, and 44.6 kbit/s and 89.3 kbit/s Poisson traffic to MTC
and URLLC, respectively). The uniform traffic is configured
with 1.5 Mbit/s for all users. The training of the DRL agents
on the offline dataset has been performed with slice-based
traffic. Finally, the base stations serve a total of 42 users
equally divided among the 3 slices.

In our data collection campaign, we gathered 3.4 GB of
data, for a total of more than 73 hours of experiments. In
each experiment, the base stations periodically report RAN
KPMs to the non-real-time RIC. These include metrics such
as throughput, buffer queues, number of PHY Transport
Blocks (TBs) and PRBs. The complete dataset features more
than 30 metrics that can be used for RAN analysis and ML
training.4

5 DRL-BASED XAPP EVALUATION

Learning strategies for RAN control are coded as xApps on
ColO-RAN. This section presents their comparative perfor-
mance evaluation. Feature selection based on RAN KPMs
is described in Section 5.1. The experimental comparison of
the different DRL models is reported in Section 5.2.

4. The dataset is available at https://tinyurl.com/3hckp848.

6

16

ColO-RAN Testing Deployment – 42 users and 7 base stations

Cell 7
Base stationUE6 UEs

3 slices

Cell 2
Base stationUE

6 UEs
3 slices

Massive Channel Emulator
(MCHEM)

Traffic Generator (TGEN)

O-RAN near real-time RIC

O-RAN
E2 termination

O-RAN
E2 manager

xApp

DRL

RIC Database

O1-like interface for data collection

E2 interface:
RIC Subscription
RIC Indication
RIC Control messages

Offline training engine

O-RAN non real-time RIC

D
R

L m
odel deploym

ent

Mobility, path loss, fading,
inter-cell interference

ML models catalog

Base station
connector

Docker

Standard Radio Node (SRN)

UE
(with srsLTE)

SRN

UE
(with srsLTE)

SRN

…
.

SRN

6 UEs
3 slices

Cell 1

O-RAN E2
termination

PDCP
RLC
MAC
PHY

R
R
C

CU/DU

PGW/SGW
HSS

Core

MME

Base station

Container 3 (one per BS)Container 2Container 1

…
.

…
.

OpenRAN Gym on a large-scale Colosseum deployment – 7 base stations, 42 UEs, 3 slices

ColO-RAN results

17

Best performance from proper
action space design + autoencoder

3.6 3.8 4 4.2 4.4
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F

sched sched-slicing (DRL-base)

(a) eMBB throughput.

50 100 150
0

0.2

0.4

0.6

0.8

1

Better

PHY TBs [tb/s]

C
D

F

(b) MTC PHY TBs.

0.8 0.9 1
0

0.2

0.4

0.6

Better

PRB ratio

C
D

F

(c) URLLC PRB ratio.

Fig. 6: Comparison between the sched and sched-slicing xApps,
with the slice-based traffic profile. The slicing for the sched xApp is
fixed and based on the configuration chosen with highest probability
by the sched-slicing xApp (36 PRBs for eMBB, 3 for MTC, 11 for
URLLC).

5.2 Comparing Different DRL-based RAN Control
Strategies

Once the input metrics have been selected, the next step in
the design of ML applications involves the selection of the
proper modeling strategy [5]. In this paper, we consider ML
models for sequential decision making, and thus focus on
DRL algorithms.

Control policy selection. In this context, it is clearly
crucial to properly select the control knobs, i.e., the RAN
parameters that need to be controlled and adapted automat-
ically, and the action space, i.e., the support on which these
parameters can change. To this end, Fig. 6 compares the
performance for the sched and sched-slicing xApps,
which perform different control actions. The first assumes
a fixed slicing profile and includes three DRL agents that
select the scheduling policy for each slice, while the second
jointly controls the slicing (i.e., number of PRBs allocated
to each slice) and scheduling policies with a single DRL
agent. For this comparison, the slicing profile for the sched
xApp evaluation matches the configuration that is chosen
most often by the sched-slicing agent, and the source
traffic is slice-based. The Cumulative Distribution Functions
(CDFs) of Fig. 6 show that the joint control of slicing and
scheduling improves the relevant metric for each slice, with
the most significant improvements in the PRB ratio and in
the throughput for the users below the 40th percentile. This
shows that there exist edge cases in which adapting the
slicing profile further improves the network performance
with respect to adaptive schedulers with a static slice con-
figuration, even if the fixed slicing configuration is the one
that is chosen most often by the sched-slicing xApp.

DRL agent design. To further elaborate on the capabil-
ities of sched-slicing, in Fig. 7 we compare results for
different configurations of the DRL agent of the xApp, as
well as for a static baseline without slicing or scheduling
adaptation, using the slice-based traffic. The slicing profile
for the static baseline is the one chosen most often by the
sched-slicing xApp. The results of Fig. 7 further high-
light the performance improvement introduced by adaptive,
closed-loop control, with the DRL-driven control outper-
forming all baselines.

Additionally, this comparison spotlights the importance
of careful selection of the action space for the DRL agents.

3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F

Slice 0

DRL-base DRL-reduced-actions DRL-no-autoencoder
RR [36, 3, 11] WF [36, 3, 11] PF [36, 3, 11]

(a) eMBB throughput.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(b) MTC buffer.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(c) URLLC buffer.

0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Better

PRB ratio

C
D

F

(d) URLLC PRB ratio.

Fig. 7: Comparison between the different models of the
sched-slicing xApp and baselines without DRL-based adaptation.
For the latter, the performance is based on the slicing configuration
chosen with highest probability by the best-performing DRL agent,
and the three scheduler policies.

By constraining or expanding the action space that the DRL
agents can explore, the xApp designer can bias the selected
policies. Consider the DRL-base and DRL-reduced-actions
agents (see Table 1), whose difference is in the set of actions
that the DRL agent can explore. Notably, the DRL-reduced-
actions agent lacks the action that results in the policy
chosen most often by the DRL-base agent. Compared to the
most common action chosen by the DRL-reduced-actions
agent (36 PRB for eMBB, 9 for MTC, 5 for URLLC), the
most likely policy of DRL-base agent favors the URLLC
over the MTC slice (11 vs. 3 PRBs). This is reflected in the
performance metrics for the different slices. Notably, DRL-
reduced-actions fails to maintain a small buffer and high
PRB ratio for the URLLC slice (Fig. 7c and 7d), but achieves
the smallest buffer occupancy for the MTC traffic.

Autoencoder. Finally, the results of Fig. 7 show the
benefit of using an autoencoder, as the DRL-base and DRL-
reduced-actions agents generally outperform the DRL-no-
autoencoder agent. Indeed, the autoencoder decreases the
dimensionality of the input for the DRL agent, improving
the mapping between the network state and the actions.
Specifically, the autoencoder used in this paper reduces
a matrix of T = 10 input vectors with N = 3 metrics
each to a single N -dimensional vector. Second, it improves
the performance with online inference on real RAN data.
Indeed, one of the issues of operating ML algorithms on
live RAN telemetry is that some entries may be reported
inconsistently or may be missing altogether. To address
this, we train the autoencoder simulating the presence of a
random number of zero entries in the training dataset. This
allows the network to be able to meaningfully represent the
state even if the input tensor is not fully populated with
RAN data.

8

3.6 3.8 4 4.2 4.4
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F

sched sched-slicing (DRL-base)

(a) eMBB throughput.

50 100 150
0

0.2

0.4

0.6

0.8

1

Better

PHY TBs [tb/s]

C
D

F

(b) MTC PHY TBs.

0.8 0.9 1
0

0.2

0.4

0.6

Better

PRB ratio

C
D

F

(c) URLLC PRB ratio.

Fig. 6: Comparison between the sched and sched-slicing xApps,
with the slice-based traffic profile. The slicing for the sched xApp is
fixed and based on the configuration chosen with highest probability
by the sched-slicing xApp (36 PRBs for eMBB, 3 for MTC, 11 for
URLLC).

5.2 Comparing Different DRL-based RAN Control
Strategies

Once the input metrics have been selected, the next step in
the design of ML applications involves the selection of the
proper modeling strategy [5]. In this paper, we consider ML
models for sequential decision making, and thus focus on
DRL algorithms.

Control policy selection. In this context, it is clearly
crucial to properly select the control knobs, i.e., the RAN
parameters that need to be controlled and adapted automat-
ically, and the action space, i.e., the support on which these
parameters can change. To this end, Fig. 6 compares the
performance for the sched and sched-slicing xApps,
which perform different control actions. The first assumes
a fixed slicing profile and includes three DRL agents that
select the scheduling policy for each slice, while the second
jointly controls the slicing (i.e., number of PRBs allocated
to each slice) and scheduling policies with a single DRL
agent. For this comparison, the slicing profile for the sched
xApp evaluation matches the configuration that is chosen
most often by the sched-slicing agent, and the source
traffic is slice-based. The Cumulative Distribution Functions
(CDFs) of Fig. 6 show that the joint control of slicing and
scheduling improves the relevant metric for each slice, with
the most significant improvements in the PRB ratio and in
the throughput for the users below the 40th percentile. This
shows that there exist edge cases in which adapting the
slicing profile further improves the network performance
with respect to adaptive schedulers with a static slice con-
figuration, even if the fixed slicing configuration is the one
that is chosen most often by the sched-slicing xApp.

DRL agent design. To further elaborate on the capabil-
ities of sched-slicing, in Fig. 7 we compare results for
different configurations of the DRL agent of the xApp, as
well as for a static baseline without slicing or scheduling
adaptation, using the slice-based traffic. The slicing profile
for the static baseline is the one chosen most often by the
sched-slicing xApp. The results of Fig. 7 further high-
light the performance improvement introduced by adaptive,
closed-loop control, with the DRL-driven control outper-
forming all baselines.

Additionally, this comparison spotlights the importance
of careful selection of the action space for the DRL agents.

3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F

Slice 0

DRL-base DRL-reduced-actions DRL-no-autoencoder
RR [36, 3, 11] WF [36, 3, 11] PF [36, 3, 11]

(a) eMBB throughput.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(b) MTC buffer.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(c) URLLC buffer.

0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Better

PRB ratio

C
D

F

(d) URLLC PRB ratio.

Fig. 7: Comparison between the different models of the
sched-slicing xApp and baselines without DRL-based adaptation.
For the latter, the performance is based on the slicing configuration
chosen with highest probability by the best-performing DRL agent,
and the three scheduler policies.

By constraining or expanding the action space that the DRL
agents can explore, the xApp designer can bias the selected
policies. Consider the DRL-base and DRL-reduced-actions
agents (see Table 1), whose difference is in the set of actions
that the DRL agent can explore. Notably, the DRL-reduced-
actions agent lacks the action that results in the policy
chosen most often by the DRL-base agent. Compared to the
most common action chosen by the DRL-reduced-actions
agent (36 PRB for eMBB, 9 for MTC, 5 for URLLC), the
most likely policy of DRL-base agent favors the URLLC
over the MTC slice (11 vs. 3 PRBs). This is reflected in the
performance metrics for the different slices. Notably, DRL-
reduced-actions fails to maintain a small buffer and high
PRB ratio for the URLLC slice (Fig. 7c and 7d), but achieves
the smallest buffer occupancy for the MTC traffic.

Autoencoder. Finally, the results of Fig. 7 show the
benefit of using an autoencoder, as the DRL-base and DRL-
reduced-actions agents generally outperform the DRL-no-
autoencoder agent. Indeed, the autoencoder decreases the
dimensionality of the input for the DRL agent, improving
the mapping between the network state and the actions.
Specifically, the autoencoder used in this paper reduces
a matrix of T = 10 input vectors with N = 3 metrics
each to a single N -dimensional vector. Second, it improves
the performance with online inference on real RAN data.
Indeed, one of the issues of operating ML algorithms on
live RAN telemetry is that some entries may be reported
inconsistently or may be missing altogether. To address
this, we train the autoencoder simulating the presence of a
random number of zero entries in the training dataset. This
allows the network to be able to meaningfully represent the
state even if the input tensor is not fully populated with
RAN data.

8

Joint control (scheduling and slicing)
outperforms scheduling-only control for
all slices

ColO-RAN – online training

18

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(a) Slice-based source traffic.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(b) Uniform source traffic.

Fig. 12: Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

step, in which it is exploring random actions. Once the agent
identifies the policies that maximize the reward in the new
environment (in this case, with the uniform source traffic
profile), the throughput improves. The best performance,
however, is achieved with the trained agent, which does not
perform any exploration. Figure 11 further elaborates on this
by showing how the online training process increases the
throughput variability for the two eMBB users. Therefore,
performing online training on a production RAN may be
something a telecom operator cannot afford, as it may
temporarily lead to disservices or reduced quality of service
for the end users. In this sense, testbeds such as Colosseum
can be an invaluable tool for two reasons. First, they provide
the infrastructure to test pre-trained ML algorithms—and
ColO-RAN enables any RAN developer to quickly onboard
and test their xApps in a standardized O-RAN platform.
Second, they allow online training without affecting the
performance of production environments.

Adaptability. The main benefit of an online training
phase is to allow the pre-trained agent to adapt to updates in
the environment that are not part of the training dataset. In
this case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Figure 12 compares the cell throughout
for the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this
traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs
to the eMBB slice (whose users have a traffic one order of
magnitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit/s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more balanced
PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to
develop, for example, smart scheduling algorithms that can

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B
)

0 0.5 1
R

R
R

R
R

R
R

R
R

R
W

F
R

R
R

R
PF

R
R

W
F

R
R

R
R

W
F

W
F

R
R

W
F

PF
R

R
PF

R
R

R
R

PF
W

F
R

R
PF

PF
W

F
R

R
R

R
W

F
R

R
W

F
W

F
R

R
PF

W
F

W
F

R
R

W
F

W
F

W
F

W
F

W
F

PF
W

F
PF

R
R

W
F

PF
W

F
W

F
PF

PF
PF

R
R

R
R

PF
R

R
W

F
PF

R
R

PF
PF

W
F

R
R

PF
W

F
W

F
PF

W
F

PF
PF

PF
R

R
PF

PF
W

F
PF

PF
PF

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B
)

Slice-based traffic

Uniform traffic

Fig. 13: Probability of selecting a slicing/scheduling combination for
the online-trained agent with two different source traffic patterns. For
each tuple, the first element refers to the PRB (scheduling) for the eMBB
slice, the second for the MTC slice, and the third for the URLLC slice.

alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-RAN
as a platform to train and test O-RAN ML solutions in a
controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span
the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [31–33].

Several papers review the potential and challenges of
ML for wireless networks, discussing open issues and po-
tential solutions. Kibria et al. highlight different areas in
which ML and big data analytics can be applied to wireless
networks [33]. Sun et al. [34] and Gunduz et al. [35] review
the key learning techniques that researchers have applied
to wireless, together with open issues. Similarly, Chen et
al. focus on artificial neural network algorithms [36]. Other
reviews can be found in [16, 37]. While these papers present
a clear overview of open problems associated with learning
in wireless networks, and sometimes include some numeri-
cal evaluations [3, 38], they do not provide results based on
an actual large-scale deployment, as this paper does, thus
missing key insights on using real data, with imperfections,
and on using closed-loop control on actual radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [39]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [40]. Others apply ML to 5G network
management and KPM prediction [41–43]. These papers,
however, do not close the loop through the experimental
evaluation of the control action or classification accuracy

10

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(a) Slice-based source traffic.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(b) Uniform source traffic.

Fig. 12: Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

step, in which it is exploring random actions. Once the agent
identifies the policies that maximize the reward in the new
environment (in this case, with the uniform source traffic
profile), the throughput improves. The best performance,
however, is achieved with the trained agent, which does not
perform any exploration. Figure 11 further elaborates on this
by showing how the online training process increases the
throughput variability for the two eMBB users. Therefore,
performing online training on a production RAN may be
something a telecom operator cannot afford, as it may
temporarily lead to disservices or reduced quality of service
for the end users. In this sense, testbeds such as Colosseum
can be an invaluable tool for two reasons. First, they provide
the infrastructure to test pre-trained ML algorithms—and
ColO-RAN enables any RAN developer to quickly onboard
and test their xApps in a standardized O-RAN platform.
Second, they allow online training without affecting the
performance of production environments.

Adaptability. The main benefit of an online training
phase is to allow the pre-trained agent to adapt to updates in
the environment that are not part of the training dataset. In
this case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Figure 12 compares the cell throughout
for the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this
traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs
to the eMBB slice (whose users have a traffic one order of
magnitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit/s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more balanced
PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to
develop, for example, smart scheduling algorithms that can

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

0 0.5 1

R
R

R
R

R
R

R
R

R
R

W
F

R
R

R
R

PF
R

R
W

F
R

R
R

R
W

F
W

F
R

R
W

F
PF

R
R

PF
R

R
R

R
PF

W
F

R
R

PF
PF

W
F

R
R

R
R

W
F

R
R

W
F

W
F

R
R

PF
W

F
W

F
R

R
W

F
W

F
W

F
W

F
W

F
PF

W
F

PF
R

R
W

F
PF

W
F

W
F

PF
PF

PF
R

R
R

R
PF

R
R

W
F

PF
R

R
PF

PF
W

F
R

R
PF

W
F

W
F

PF
W

F
PF

PF
PF

R
R

PF
PF

W
F

PF
PF

PF

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

Slice-based traffic

Uniform traffic

Fig. 13: Probability of selecting a slicing/scheduling combination for
the online-trained agent with two different source traffic patterns. For
each tuple, the first element refers to the PRB (scheduling) for the eMBB
slice, the second for the MTC slice, and the third for the URLLC slice.

alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-RAN
as a platform to train and test O-RAN ML solutions in a
controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span
the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [31–33].

Several papers review the potential and challenges of
ML for wireless networks, discussing open issues and po-
tential solutions. Kibria et al. highlight different areas in
which ML and big data analytics can be applied to wireless
networks [33]. Sun et al. [34] and Gunduz et al. [35] review
the key learning techniques that researchers have applied
to wireless, together with open issues. Similarly, Chen et
al. focus on artificial neural network algorithms [36]. Other
reviews can be found in [16, 37]. While these papers present
a clear overview of open problems associated with learning
in wireless networks, and sometimes include some numeri-
cal evaluations [3, 38], they do not provide results based on
an actual large-scale deployment, as this paper does, thus
missing key insights on using real data, with imperfections,
and on using closed-loop control on actual radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [39]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [40]. Others apply ML to 5G network
management and KPM prediction [41–43]. These papers,
however, do not close the loop through the experimental
evaluation of the control action or classification accuracy

10

The agent is trained with a dataset that
represent certain network conditions

As a result, it selects optimal
network configurations with a
certain probability

What happens when there is an unforeseen configuration in the network?

Fine-tune the DRL model with online training on the near-RT RIC itself

ColO-RAN – online training

2260 10000 17460 25000 29820

�0.22

�0.24

�0.26

�0.28

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

En
tr

op
y

re
gu

la
ri

za
tio

n
lo

ss

(a) Entropy regularization loss.

2260 10000 17460 25000 29820
0

0.2

0.4

0.6

0.8

1

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na
Training steps

A
ve

ra
ge

re
w

ar
d

(b) Reward.

Fig. 8: Metrics for the training on the offline dataset and the online
training on Colosseum and Arena. The Arena configuration uses LTE
band 7. Notice that the Arena deployment considers 3 users per base
station, contrary to the 6 users per base station of Colosseum, thus the
absolute average reward decreases.

100 200
29820

17460

2260

Actions

Tr
ai

ni
ng

st
ep

s

100 200

Actions

Fig. 9: Distribution of the actions during the training on the offline
dataset and the online training on Colosseum. The offline training stops
at step 17460.

6 ONLINE TRAINING FOR DRL-DRIVEN XAPPS

The last set of results presents an analysis of the tradeoffs
associated with training DRL agents on a live network
in an online fashion. These include the evaluation of the
time required for convergence, the impact of the explo-
ration process on the RAN performance, and the benefits
involved with this procedure. To do this, we load on the
online-training xApp a model pre-trained on the of-
fline dataset with the slice-based traffic profile. The same
model is used in the DRL-reduced-actions agent. We deploy
the online-training xApp on a ColO-RAN base station
and further continue the training with online exploration,
using the uniform traffic profile (with the same constant bi-
trate traffic for each user). Additionally, we leverage the con-
tainerized nature of ColO-RAN to deploy it on Arena [11], a
publicly available indoor testbed, and perform training with
one SDR base station and three smartphones.

Convergence. Figures 8 and 9 show how quickly the pre-
trained agent adapts to the new environment. In particular,
Fig. 8a reports the entropy regularization loss as a function
of the training step of the agent. This metric correlates with
the convergence of the training process: the smaller the
absolute value of the entropy, the more likely the agent has
converged to a set of actions that maximize the reward in
the long run [30]. We stop the training when this metric
(and the average reward, Fig. 8b) plateaus, i.e., at step 17460
for the offline training, step 29820 for the online training
on Colosseum. The loss remains stable when transitioning
from the Colosseum to the Arena online training, while it

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1
Better

Per-user throughput [Mbit/s]

C
D

F

OT, beginning

OT, mid

OT, end
TR, sched-slicing

Fig. 10: CDF of the throughput for the eMBB slice during the online
training (OT) and with the trained agent (TR) with the uniform traffic
profile.

0 50 100 150 200 250

2

3

4

Time [s]Th
ro

ug
hp

ut
[M

bi
t/

s]
Trained model During training

Fig. 11: eMBB slice throughput during training and with the trained
model.

increases (in absolute value) when switching traffic profile
at step 17460. This shows that the agent can better general-
ize across different channel conditions than source traffic
profiles. The same trend can be observed in the average
reward (Fig. 8b), with the difference that the transition from
Colosseum to Arena halves the reward (as this configuration
features 3 and not 6 users for each base station). While the
Colosseum online training requires 30% fewer steps than the
initial offline training, it also comes with a higher wall-clock
time. Indeed, offline exploration allows the instantiation of
multiple parallel learning environments. Because of this,
the Colosseum DGX supports the simultaneous exploration
of 45 network configurations. Instead, online training can
explore one configuration at a time, leading to a higher wall-
clock time.

Figure 9 reports the evolution of the distribution of
the actions chosen by the DRL agent for the Colosseum
offline and online training. Three histograms for steps 2260,
17460 (end of offline training) and 29820 (end of online
training) are also highlighted in the plot on the right. During
training, the distribution of the actions evolves from uni-
form (in yellow) to more skewed, multi-modal distributions
at the end of the offline training (in orange) and online
training (in red). Additionally, when the training on the
new environment begins, the absolute value of the entropy
regularization loss increases (Fig. 8a), and, correspondingly,
the distribution starts to change, until convergence to a new
set of actions is reached again.

Impact of online training on RAN performance.

Achieving convergence with a limited number of steps
is particularly important for online training, as the per-
formance of the RAN may be negatively affected during
the training process. Figure 10 reports the CDF for the
user throughput during training and after, when the agent
trained online is deployed on the sched-slicing xApp.
The performance worsens when comparing the initial train-
ing step, which corresponds to the agent still using the
actions learned during offline training, with an intermediate

9

Two events:
1. change user traffic (from slice-based to uniform)
2. move from Colosseum to Arena deployment

2260 10000 17460 25000 29820

�0.22

�0.24

�0.26

�0.28

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

En
tr

op
y

re
gu

la
ri

za
tio

n
lo

ss

(a) Entropy regularization loss.

2260 10000 17460 25000 29820
0

0.2

0.4

0.6

0.8

1

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

A
ve

ra
ge

re
w

ar
d

(b) Reward.

Fig. 8: Metrics for the training on the offline dataset and the online
training on Colosseum and Arena. The Arena configuration uses LTE
band 7. Notice that the Arena deployment considers 3 users per base
station, contrary to the 6 users per base station of Colosseum, thus the
absolute average reward decreases.

100 200
29820

17460

2260

Actions

Tr
ai

ni
ng

st
ep

s

100 200

Actions

Fig. 9: Distribution of the actions during the training on the offline
dataset and the online training on Colosseum. The offline training stops
at step 17460.

from the Colosseum to the Arena online training, while it
increases (in absolute value) when switching traffic profile
at step 17460. This shows that the agent generalizes better
across different channel conditions than source traffic pro-
files. The same trend is observed for the average reward
(Fig. 8b), although the transition from Colosseum to Arena
halves the reward (as this configuration features 3 instead
of 6 users for each base station). While Colosseum online
training requires 30% fewer steps than the initial offline
training, it also comes with a higher wall-clock time as
offline exploration allows the instantiation of multiple par-
allel learning environments. Because of this, the Colosseum
DGX supports the simultaneous exploration of 45 network
configurations. Instead, online training can explore one con-
figuration at a time, leading to a higher wall-clock time.

Figure 9 reports the evolution of the distribution of
the actions chosen by the DRL agent for the Colosseum
offline and online training. Three histograms for steps 2260,
17460 (end of offline training) and 29820 (end of online
training) are also highlighted in the plot on the right. During
training, the distribution of the actions evolves from uni-
form (in yellow) to more skewed, multi-modal distributions
at the end of the offline training (in orange) and online
training (in red). Additionally, when the training on the
new environment begins, the absolute value of the entropy
regularization loss increases (Fig. 8a), and, correspondingly,
the distribution starts to change, until convergence to a new
set of actions is reached again.

Impact of online training on RAN performance.

Achieving convergence with a limited number of steps

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1
Better

Per-user throughput [Mbit/s]

C
D

F

OT, beginning

OT, mid

OT, end
TR, sched-slicing

Fig. 10: CDF of the throughput for the eMBB slice during the online
training (OT) and with the trained agent (TR) with the uniform traffic
profile.

0 50 100 150 200 250

2

3

4

Time [s]Th
ro

ug
hp

ut
[M

bi
t/

s]

Trained model During training

Fig. 11: eMBB slice throughput during training and with the trained
model.

is particularly important for online training, as the per-
formance of the RAN may be negatively affected during
the training process. Figure 10 reports the CDF for the
user throughput during training and after, when the agent
trained online is deployed on the sched-slicing xApp.
The performance worsens when comparing the initial train-
ing step, which corresponds to the agent still using the
actions learned during offline training, with an intermediate
step, in which it is exploring random actions. Once the agent
identifies the policies that maximize the reward in the new
environment (in this case, with the uniform source traffic
profile), the throughput improves. The best performance,
however, is achieved with the trained agent, which does not
perform any exploration. Figure 11 further elaborates on this
by showing how the online training process increases the
throughput variability for the two eMBB users. Therefore,
performing online training on a production RAN may be
something a telecom operator cannot afford, as it may
temporarily lead to disservices or reduced quality of service
for the end users. In this sense, testbeds such as Colosseum
can be an invaluable tool for two reasons. First, they provide
the infrastructure to test pre-trained ML algorithms—and
ColO-RAN enables any RAN developer to quickly onboard
and test their xApps in a standardized O-RAN platform.
Second, they allow online training without affecting the
performance of production environments.

Adaptability. The main benefit of an online training
phase is to allow the pre-trained agent to adapt to updates in
the environment that are not part of the training dataset. In
this case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Figure 12 compares the cell throughout
for the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this

10

Col—RAN – online training

20

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(a) Slice-based source traffic.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(b) Uniform source traffic.

Fig. 12: Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

0 0.5 1

R
R

R
R

R
R

R
R

R
R

W
F

R
R

R
R

PF
R

R
W

F
R

R
R

R
W

F
W

F
R

R
W

F
PF

R
R

PF
R

R
R

R
PF

W
F

R
R

PF
PF

W
F

R
R

R
R

W
F

R
R

W
F

W
F

R
R

PF
W

F
W

F
R

R
W

F
W

F
W

F
W

F
W

F
PF

W
F

PF
R

R
W

F
PF

W
F

W
F

PF
PF

PF
R

R
R

R
PF

R
R

W
F

PF
R

R
PF

PF
W

F
R

R
PF

W
F

W
F

PF
W

F
PF

PF
PF

R
R

PF
PF

W
F

PF
PF

PF

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17

18 9 23
12 15 23

6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

Slice-based traffic

Uniform traffic

Fig. 13: Probability of selecting a slicing/scheduling combination for
the online-trained agent with two different source traffic patterns. For
each tuple, the first element refers to the PRB (scheduling) for the eMBB
slice, the second for the MTC slice, and the third for the URLLC slice.

traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs
to the eMBB slice (whose users have a traffic one order of
magnitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit/s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more balanced
PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to
develop, for example, smart scheduling algorithms that can
alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-RAN
as a platform to train and test O-RAN ML solutions in a
controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span

the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [34–36].

Several papers review the potential and challenges of
ML for wireless networks, discussing open issues and po-
tential solutions. Kibria et al. highlight different areas in
which ML and big data analytics can be applied to wireless
networks [36]. Sun et al. [37] and Gunduz et al. [38] review
the key learning techniques that researchers have applied
to wireless, together with open issues. Similarly, Chen et
al. focus on artificial neural network algorithms [39]. Other
reviews can be found in [18, 40]. While these papers present
a clear overview of open problems associated with learning
in wireless networks, and sometimes include some numeri-
cal evaluations [3, 41], they do not provide results based on
an actual large-scale deployment, as this paper does, thus
missing key insights on using real data, with imperfections,
and on using closed-loop control on actual radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [42]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [43]. Others apply ML to 5G network
management and KPM prediction [44–46]. These papers,
however, do not close the loop through the experimental
evaluation of the control action or classification accuracy
on real testbeds and networks. Chuai et al. describe a large-
scale, experimental evaluation on a production network, but
the evaluation is limited to a single performance metric [47].

DRL has recently entered the spotlight as a promising
enabler of self-adaptive RAN control. Nader et al. consider
a multi-agent setup for centralized control in wireless net-
works, but not in the context of cellular networks [48].
Wang et al. use DRL to perform handover [49]. Other pa-
pers analyze the theoretical performance of DRL agents for
medium access [50] and user association [51]. Mollahasani
et al. evaluate actor-critic learning for scheduling [52], and
Zhou et al. applies Q-learning to RAN slicing [8]. Chinchali
et al. apply DRL to user scheduling at the base station
level [53]. Differently from these papers, we analyze the per-
formance of DRL agents with a closed loop, implementing
the control actions on a software-defined testbed with an O-
RAN compliant infrastructure to provide insights on how
DRL agents impact a realistic cellular network environment.
Finally, [6, 7] consider ML/DRL applications in O-RAN,
but provide a limited evaluation of the RAN performance
without specific insights and results on using ML.

8 CONCLUSIONS AND LESSONS LEARNED

The paper presents the first large-scale evaluation of ML-
driven O-RAN xApps for managing and controlling a cel-
lular network. To this purpose, we introduce ColO-RAN,
the implementation of the O-RAN architecture in the Colos-
seum network emulator. ColO-RAN features a RAN E2 ter-
mination, a near-real-time RIC with three different xApps,
and a non-real-time RIC for data storage and ML training.

11

The online-trained agent
• adapts to the new traffic
• still remember how to behave with the old traffic

Orchestrating RAN Intelligence

Four open problems:

I want to change scheduling
decisions in real time to broadcast

4K video in Times Square, NY

ML/AI catalogHigh-level intent

Infrastructure

1. What does the
intent mean?

2. Which models best
satisfy the intent?

3. Where and when to deploy
network intelligence?

4. How to deploy, execute,
manage intelligence?

OrchestRAN: orchestrating intelligence in the Open RAN

Execute in the non-RT RIC

I. Intent recognition

II. Optimized intelligence placement

III. Automated deployment/execution/management of intelligence

S. D'Oro, L. Bonati, M. Polese, T. Melodia, "OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN," Proc. of IEEE Intl. Conf. on Computer Communications (INFOCOM), May
2022.

OrchestRAN step-by-step

(I) Submit request:

--- Functionalities

--- Locations

--- Time-scale

(III) Compute
orchestration policy

--- Which model

--- Where and when

(II) Collect requests

(IV) Deploy
intelligence

Prototyping OrchestRAN

•Orchestrate the ColO-RAN xApps on Colosseum

• E2 traffic:
• Light bars: total traffic
• Dark bars: payload only

• xApps on near-RT RIC
• dApps on DUs
• These are not O-RAN-

compliant (yet)

More powerful Dus
More intelligence at the edge

Only 40% is payload

dApps – the missing piece in O-RAN

25

Non-real-time RIC
A1

O-RU

gNB

Non-real-time
> 1 s

rApps

Near-real-time
10-1000 ms

xApps

Real-time
< 10 ms
dApps

E2

O1

Policies, models, slicing Aggregated
KPMs

CU-level and
MAC-level

KPMs

MAC/PHY-level
KPMs, I/Q

samples, Packets

Radio Resource Management,
Session Management

Beamforming, Scheduling,
Puncturing, Interference and

Modulation Management

Control objective Input data Timescale and Apps O-RAN Architecture

O-DU
O-CU-CP

Near-real-time RIC

O-CU-UP
E1

dApps

S. D'Oro, M. Polese, L. Bonati, H. Cheng, and T. Melodia, "dApps: Distributed Applications for Real-time Inference and
Control in O-RAN," arXiv:2203.02370 [cs.NI], March 2022.

dApps – a possible architecture

26

Service Management and Orchestration Framework (SMO)

O-RU

F1-c F1-u

Open Fronthaul

E2 E2

Near-real-time RIC

Conflict
mitigation

Non-real-time RIC

Conflict
mitigation

rApp
N

App.
catalog

O1

• Control actions
• Enrichment info
• Data for inference

rApp
NrApp(s)

rApp
NrApp

NxApp(s)

Container-based environment

Container-based environment

A1

Intent-based Orchestrator

rApp

dApp Controller and Monitor
xApp

O-DU

dApp 1 dApp 2 dApp N. . .
Container-based environment

• ML/AI models
• Data collection
• Mgmt/Config

E1
Container-based

environment

1dApp(s)

O-CU-CP

Container-based
environment

1dApp(s)

O-CU-UP

dApps – example of use cases

• I/Q-based deep learning applications
• Beam management (DeepBeam)

• Spectrum sensing (DeepSense/Charm)

• Real-time scheduling

27

…

I/Q samples

K

L

7 Conv + MaxPool
Layers

Conv
(64, 1x7)

MaxPool
(1x2) (128) (128)

2 Dense
Layers

Softmax
Layer

Cannot be moved out of the RAN
• security, privacy
• latency

Fig. 3: Data rate and latency to perform I/Q-based beam management
over E2 interface. In most cases, latency is higher than 10 ms
(required to perform real-time beam management).

control latency constraints, (ii) exposing sensitive user
data; and (iii) increasing the traffic on the E2 or O1
interface excessively. As an example, Fig. 3 reports the
data rate (and time) needed to transfer the I/Q samples
required to perform inference with the DeepBeam con-
volutional neural networks from a DU to the near-RT
RIC. DeepBeam can perform inference and classify the
transmit beam and AoA using any kind of samples (e.g.,
from packets or sounding signals) [8]. As a reference, in
this case we consider the number of samples that can be
collected through 3GPP NR Sounding Reference Signals
(SRSs). We use 3GPP-based parameters and assume that
each SRS uses 3300 subcarriers (i.e., the full bandwidth
available to NR UEs), 2 symbols in time, a periodicity
Tsounding of 5, 10, or 20 slots, and that each UE monitors
3 uplink beams. The I/Q samples have 9 bits, and we
assume numerology 3 (i.e., slots of 125 µs). The results
show that it would be impractical to transfer the required
amount of samples because of timing (i.e., no real-time
control) and of the data rate required, which can reach
more than 100 Gbps in certain configurations.

B. Supporting Low-latency Applications

Another application of practical relevance is that of
dApps to support real-time and low-latency applications
by, for example, controlling RAN slicing and scheduling
decisions. Indeed, the timescale at which dApps operate
is appropriate to access UE-specific information from
the DU in real time (e.g., buffer size, MCS profile,
instantaneous SINR), and to make decisions on the RAN
slicing and resource allocation strategies based on QoS
requirements and network conditions.

To showcase the benefits of dApps, we trained a set of
ML solutions for O-RAN applications. Specifically, we
trained two Deep Reinforcement Learning (DRL) agents
that process input data from the RAN (i.e., downlink
buffer occupancy, throughput, traffic demand) to control
the scheduling and RAN slicing policies of the gNBs
(due to space limitations, details are omitted and can be
found in [2]). The gNBs are deployed on the Colosseum

Fig. 4: E2 traffic analysis. Fig. 5: URLLC slice end-to-end latency for
different RAN slicing and schedulers.

platform [12] ands implement network slices associated
to different traffic types, i.e., Enhanced Mobile Broad-
band (eMBB), Machine-type Communications (MTC),
and URLLC traffic. The agents aim at (i) maximizing
the throughput for the eMBB slice, (ii) maximizing the
number of transmitted packet for MTC, and (iii) reducing
the service latency for URLLC. Moreover, we also
trained two forecasting models to predict the UE traffic
demand and the transmission buffer occupancy.

We consider the case where the DRL agents and
the forecasters can run either at the near-RT RIC as
xApps, or at the DUs as dApps. Both xApps and dApps
have been implemented as Docker containers. In the
former case, data for inference is received from the E2
interface, while in the latter data is locally available
at the dApp. We also leverage the OrchestRAN [14]
framework developed in our prior work to orchestrate
the network intelligence according to operator’s intents,
determine how to split and distribute intelligence among
xApps and dApps, and dispatch them. Figure 4 shows
the impact that running intelligence at the dApps has on
the overhead over the E2 interface as a function of the
total number of deployed xApps and dApps. We consider
three different configurations. In one configuration, the
intelligence can only run at the xApps; in the other two,
the ML solutions can be executed either through xApps
or dApps, with the DUs supporting at most 2 and 8
concurrent dApps. Figure 4 shows that dApps halve the
traffic over the E2 interface, with a traffic reduction up to
3.57⇥ with respect to the case with only xApps. Notice
that two or more xApps can share the same input data
received over the E2 interface. Thus, the traffic over E2
does not linearly grow with the number of xApps.

To further demonstrate the importance of controlling
RAN behavior in real time, we ran extensive data collec-
tion campaigns on Colosseum [2, 12], and demonstrated
the impact of selecting different RAN slicing (i.e., the
ratio of Physical Resource Blocks (PRBs) reserved ex-
clusively to URLLC traffic) and scheduling strategies
(i.e., Round Robin (RR) and Proportional Fair (PF))
on the application-layer latency of URLLC traffic. The

6

Resources on NextG open source software

Open 5G Forum – slides and videos online: open5g.info/open-5g-forum
(supported by ACM SIGMOBILE)

Call for papers: IEEE JSAC special issue on
Open RAN

https://tinyurl.com/jsac-oran

Intelligent networks with Open RAN
Challenges and opportunities

Michele Polese
Institute for the Wireless Internet of Things

Northeastern University
m.polese@northeastern.edu

with Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, Tommaso Melodia

Partially supported by NSF Grants CNS-1925601, CNS-2120447, and CNS-2112471 and ONR Grant N00014-20-1-2132

openrangym.com

mailto:m.polese@northeastern.edu

