openrangym.com

Institute for the Wireless Internet of Things at Northeastern University

Intelligent networks with Open RAN Challenges and opportunities

Michele Polese Institute for the Wireless Internet of Things Northeastern University <u>m.polese@northeastern.edu</u>

with Leonardo Bonati, Salvatore D'Oro, Stefano Basagni, Tommaso Melodia

Partially supported by NSF Grants CNS-1925601, CNS-2120447, and CNS-2112471 and ONR Grant N00014-20-1-2132

O-RAN - a reference architecture for programmable NextG

I. Open, standardized interfaces

2. Disaggregated RAN

3. Open-source contributions

4. RAN Intelligent Controllers

Institute for the Wireless Internet of Things at Northeastern

Intelligent Control Loops

Currently supported by O-RAN

Control and learning objective	Scale	Input data	Timescale	Architecture
Policies, models, slicing	> 1000 devices	Infrastructure-level KPIs	Non real-time > I s	Service Management and Orchestration (SMO) non real-time RIC
User Session Management e.g., load balancing, handover	> 100 devices	CU-level KPIs e.g., number of sessions, PDCP traffic	Near real-time 10-1000 ms	Al gNB Near real-time
Medium Access Management e.g., scheduling policy, RAN slicing	> 100 devices	MAC-level KPIs e.g., PRB utilization, buffering	Near real-time 10-1000 ms	RIC FI
Radio Management e.g., resource scheduling, beamforming	~10 devices	MAC/PHY-level KPIs e.g., PRB utilization, channel estimation	Real-time < 10 ms	DU Open FH
Device DL/UL Management e.g., modulation, interference, blockage detection	l device	I/Q samples	Real-time < 1 ms	

For further study or not supported

Open Challenges toward Intelligent Open RAN

Need large-scale heterogeneous datasets

Need testing of closed-loop control without compromising network performance

Need algorithms that generalize to different scenarios and conditions

Experimental platforms for wireless Al

Need large-scale heterogeneous datasets

Tools are available for large-scale data collection in cellular networks: SCOPE platform https://github.com/wineslab/colosseum-scope

> https://advancedwireless.org https://northeastern.edu/colosseum/

Experimental Research at Northeastern

Develop and validate innovative spectrum solutions in heterogeneous environments

Arena @ NEU

UAS Lab @ NEU

Colosseum @ NEU

X-Mili @ NEU

6

mmWave/THz @ NEU

PAWR Platforms

POWDER

Salt Lake City, UT

Software defined

networks and

massive MIMO

COSMOS

West Harlem, NY

backhaul research

Millimeter wave and

AERPAVV

Rural Broadband Platform

Raleigh, NC

TBD Coming late 2020

An Experiment's Journey

The same experiment (and software) can be seamlessly deployed in the different testbeds

- Initial design and testing at-a-scale on Colosseum w/ different scenarios
- Validate on real-world indoor environment on Arena
- Experiment into the wild on city-scale platforms

Colosseum @ Northeastern

Colosseum is the world most powerful hardware-in-the-loop network emulator

8

- 256 software-defined radios
- 25.6 GHz of emulated bandwidth, 52 TB/s RF data
- 21 racks of radios, 171 high-performance servers w/ CPUs, GPUs
- Massive computing capabilities (CPU, GPU, FPGA):
 - > 900 TB of storage
 - 320 FPGAs
 - 18 10G switches
 - 19 clock distribution systems
 - 52 TB/s of digital RF data

Create and test complex 5G scenarios

Colosseum Architecture

at Northeastern

Open Challenges

OpenRAN Gym – A Toolbox for Intelligent O-RAN

- O-RAN-compliant near-real-time RIC running on Colosseum (ColO-RAN)
- RAN framework for data-collection and control of the base stations (SCOPE)
- Programmable protocol stacks (based on srsRAN at this time)
- Publicly-accessible experimental platforms (e.g., Colosseum, Arena, PAWR platforms)

Experimental Platforms for Data Collection and Testing

OpenRAN Gym and ns-3

- Developed a custom E2 termination for ns-3
- ns-3 provides functional RAN environment and connects to an O-RAN-compliant near-RT RIC
- To be included in the O-RAN SC

OpenRAN Gym on PAWR Platforms

Results are consistent across very different platforms with heterogeneous environments

Institute for the Wireless Internet of Things at Northeastern

L. Bonati, M. Polese, S. D'Oro, S. Basagni, T. Melodia, "OpenRAN Gym: AI/ML Development, Data Collection, and Testing for O-RAN on PAWR Platforms," arXiv:2207.12362 [cs.NI], July 2022.

ColO-RAN – ML development and testing for O-RAN

Generate a compressed representation of the RAN

Exploit it to generate control actions in the network

M. Polese, L. Bonati, S. D'Oro, S. Basagni, and T. Melodia, "ColO-RAN: Developing Machine Learning-based xApps for Open RAN Closed-loop Control on Programmable Experimental Platforms", IEEE TMC, to appear

ColO-RAN xApps

Control slicing and scheduling of the RAN

- sched xApp select scheduling policy for a specific slice
- sched-slicing jointly select scheduling policy and slicing for a base station

хАрр	Functionality	Input (Observation)	Output (Action)	ML Models	Utility (Reward)
sched- slicing	Single-DRL-agent for joint slicing and scheduling control	Rate, buffer size, PHY TBs (DL)	PRB and scheduling policy for each slice	DRL-base, DRL-reduced- actions, DRL-no-autoencoder	Maximize rate for eMBB, PHY TBs for MTC, minimize buffer size for URLLC
sched	Multi-DRL-agent per-slice scheduling policy selection	Rate, buffer size, PRB ratio (DL)	Scheduling policy for each slice	DRL-sched	Maximize rate for eMBB and MTC, PRB ratio for URLLC

ColO-RAN Testing Deployment – 42 users and 7 base stations

OpenRAN Gym on a large-scale Colosseum deployment – 7 base stations, 42 UEs, 3 slices

ColO-RAN results

Better

Joint control (scheduling and slicing) outperforms scheduling-only control for all slices

Best performance from proper action space design + autoencoder

Col

What happens when there is an unforeseen configuration in the network?

Fine-tune the DRL model with online training on the near-RT RIC itself

ColO-RAN – online training

Two events:

- I. change user traffic (from slice-based to uniform)
- 2. move from Colosseum to Arena deployment

(a) Entropy regularization loss.

(b) Reward.

Arena

Training on offline dataset

(slice-based traffic)

Training on

offline dataset

(slice-based traffic)

Arena

Col-**RAN** – online training

20

still remember how to behave with the old traffic

Orchestrating RAN Intelligence

OrchestRAN: orchestrating intelligence in the Open RAN

Execute in the non-RT RIC

- I. Intent recognition
- II. Optimized intelligence placement
- **III.** Automated deployment/execution/management of intelligence

S. D'Oro, L. Bonati, M. Polese, T. Melodia, "OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN," Proc. of IEEE Intl. Conf. on Computer Communications (INFOCOM), May 2022.

OrchestRAN step-by-step

Institute for the Wireless Internet of Things at Northeastern

Prototyping OrchestRAN

Orchestrate the ColO-RAN xApps on Colosseum

- E2 traffic:
 - Light bars: total traffic
 - Dark bars: payload only
- xApps on near-RT RIC
- dApps on DUs
 - These are not O-RANcompliant (yet)

Only 40% is payload

More powerful Dus More intelligence at the edge

dApps – the missing piece in O-RAN

Control objective	Input data	Timescale and Apps	O-RAN Architecture	
Policies, models, slicing	Aggregated KPMs	Non-real-time >Is rApps	Non-real-time RIC	
Radio Resource Management,	CU-level and	Near-real-time		
Session Management	MAC-level KPMs	10-1000 ms x Apps	Near-real-time RIC	
Beamforming, Scheduling, Puncturing, Interference and Modulation Management dApps	MAC/PHY-level KPMs, I/Q samples, Packets	Real-time < 10 ms dApps	e2 gNB O-CU-CP O-CU-UP O-DU O-RU	

25 S. D'Oro, M. Polese, L. Bonati, H. Cheng, and T. Melodia, "dApps: Distributed Applications for Real-time Inference and Control in O-RAN," arXiv:2203.02370 [cs.NI], March 2022.

Institute for the Wireless Internet of Things at Northeastern

dApps – a possible architecture

Institute for the Wireless Internet of Things at Northeastern

26

dApps – example of use cases

Cannot be moved out of the RAN

- security, privacy
- latency

Resources on NextG open source software

Open 5G Forum – slides and videos online: open5g.info/open-5g-forum (supported by ACM SIGMOBILE)

Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges

Michele Polese, Leonardo Bonati, Salvatore D'Oro, Stefano Basagni, Tommaso Melodia

Open, programmable,

· contributing to this open i

Architectural Enablers of 5G Cellular

Radio Access Network

RAN and Core Framew

Software Defined

Open Testbeds

and Virtualized 5G

Networks

Consider

on Github

Networks

Core Net

Open 5G Forum - Fall 2021 Open 5G Forum - A virtual event on open and open source software for 5G - Fall 2021 edition (RAN software)

Call for papers: IEEE JSAC special issue on **Open RAN** https://tinyurl.com/jsac-oran

br the Wireless Things ern

openrangym.com

Institute for the Wireless Internet of Things at Northeastern University

Intelligent networks with Open RAN Challenges and opportunities

Michele Polese Institute for the Wireless Internet of Things Northeastern University <u>m.polese@northeastern.edu</u>

with Leonardo Bonati, Salvatore D'Oro, Stefano Basagni, Tommaso Melodia

Partially supported by NSF Grants CNS-1925601, CNS-2120447, and CNS-2112471 and ONR Grant N00014-20-1-2132