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Abstract

The fifth generation of cellular networks (5G) will rely on edge cloud deployments to satisfy the

ultra-low latency demand of future applications. In this paper, we argue that an edge-based deployment

can also be used as an enabler of advanced Machine Learning (ML) applications in cellular networks,

thanks to the balance it strikes between a completely distributed and a centralized approach. First,

we will present an edge-controller-based architecture for cellular networks. Second, by using real data

from hundreds of base stations of a major U.S. national operator, we will provide insights on how to

dynamically cluster the base stations under the domain of each controller. Third, we will describe how

these controllers can be used to run ML algorithms to predict the number of users, and a use case in

which these predictions are used by a higher-layer application to route vehicular traffic according to

network Key Performance Indicators (KPIs). We show that prediction accuracy improves when based

on machine learning algorithms that exploit the controllers’ view with respect to when it is based only

on the local data of each single base station.

Index Terms

5G, machine learning, edge, controller, prediction, big data.

I. INTRODUCTION

The next generation of cellular networks (5G) is being designed to satisfy the massive growth

in capacity demand, number of connections and the evolving use cases of a connected society

for 2020 and beyond [1]. In particular, 5G networks target the following KPIs: (i) very high
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throughput, in the order of 1 Gbps or more, to enable virtual reality applications and high-quality

video streaming; (ii) ultra-low latency, possibly smaller than 1 ms on the wireless link, to support

autonomous control applications; (iii) ultra-high reliability; (iv) low energy consumption; and

(v) high availability of robust connections [2], [3].

In order to meet these requirements, a new approach in the design of the network is required,

and new paradigms have recently emerged [3]. First, the densification of the network will increase

the spatial reuse and, combined with the usage of mmWave frequencies, the available throughput.

On the other hand, this will introduce new challenges related to mobility management [4].

Second, with the Mobile Edge Cloud (MEC), the content will be brought closer to the final

users, in order to decrease the end-to-end latency [5]. Third, a higher level of automation will

be introduced in cellular networks, relying on ML techniques and Software Defined Networking

(SDN), in order to manage the increased complexity of 5G networks.

The usage of machine learning and artificial intelligence techniques to perform autonomous

operations in cellular networks has widely been studied in the recent years, with use cases

that range from optimization of video flows [6] to energy-efficient networks [7] and resource

allocation [8]. This trend is coupled with the application of big-data analytics that leverage the

huge amount of monitoring data generated in mobile networks to provide more insights on the

behavior of networks at scale [9]. When applied to mobile networks, these two technological

components can empower costs savings, but also new applications, as we will show in this paper.

Despite the importance of this topic, little attention has been given to practical considerations

related to how it is possible to effectively deploy machine learning algorithms and intelligence

in cellular networks. For example, in [7], the authors mention the usage of a generic Radio

Access Network (RAN) controller, without providing details on how this can be realized in a

5G architecture. The design of a scalable and efficient edge architecture is imperative not only for

efficient operations but also to enable a wide range of ML applications in 5G systems. Therefore,

the first contribution of this paper is a practical mobile-edge controller-based architecture that

(i) can be deployed at scale in 5G networks, relying on the MEC approach; (ii) can efficiently

handle the amount of data generated by the infrastructure to run edge and cloud analytics and

extract relevant metrics; and (iii) can improve the accuracy of the prediction using machine

learning algorithms compared to a baseline reference of a completely distributed (i.e., per-base-

station) solution. Moreover, we characterize this architecture with respect to the latest 5G RAN

specifications for 3rd Generation Partnership Project (3GPP) NR, the 5G standard for cellular
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networks [10], and provide insights on how the controllers can interface with an NR deployment,

following the approach of an emerging open RAN initiative contributed by multiple operators

and vendors [11]. Then, using real data collected from hundreds of base stations of a major U.S.

carrier in the San Francisco and Mountain View areas for more than a month, we show how

big-data analytics can be used to deploy the controllers themselves. In this second contribution,

we compare a dynamic clustering approach for the assignment of base stations to clusters based

on day-to-day users’ mobility patterns and a baseline static approach based on the position of

the base stations, and show how the insights provided by the live network can reduce the number

of inter-controller interactions and thus reduce the control plane latency.

In the second part of the paper, in order to show why the controller-based architecture can

be beneficial for machine learning applications, we present a use case which requires predicting

the number of users in each base station at different time instants in the future. This application

is a service that the network operator could offer to its customers that want to drive between

two locations: given multiple routes available, which is the one the user should prefer in order

to maximize its Quality of Service (QoS) in the network? We measure the QoS with different

KPIs, which can be computed as a function of the number of users attached to the base stations.

We test different machine learning techniques for prediction (i.e., the Bayesian Ridge Regressor,

the Gaussian Process Regressor and the Random Forest Regressor) and compare an approach in

which each base station predicts its number of users based only on local information compared

to a strategy in which the controller predicts a vector with the number of users in all its base

stations. In this third contribution, we show that it is possible to reduce the prediction error by

up to 53% on average, which is a promising result for enabling new user services and machine-

learning-based optimization techniques in cellular networks.

The remainder of the paper is organized as follows. In Sec. II we present the relevant state

of the art, and Sec. III follows with a description of the real network data that will be used

throughout the paper. In Sec. IV we describe the aforementioned architecture, then in Sec. V

we provide details on the route-selection application. Results on the prediction accuracy for the

number of users are given in Sec. VI. Finally, in Sec. VII we conclude the paper.

II. STATE OF THE ART

The application of ML techniques to cellular networks is a topic that has gained a lot of

attention recently, thanks to the revived importance of ML and Artificial Intelligence (AI)
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throughout all facets of the industry. The paper [12] surveys algorithms and applications of

ML in 4G self-organizing networks. The surveys in [13], [14], as well, present some recent

results on how it is possible to apply regression techniques to mobile and cellular scenarios

in order to optimize the network performance. The paper [15] gives an overview of how

machine learning can play a role in next-generation 5G cellular networks, and lists relevant ML

techniques and algorithms. The usage of big-data-driven analytics for 5G is considered in [16],

[17], with a discussion of how data-driven approaches can empower self-organizing networks.

The paper [18] discusses which innovative services can be provided using machine learning in

5G networks, e.g., just-in-time optimizations, QoS enforcement. However, none of these papers

provides results based on real operators datasets at large scale that show the actual gains of data-

driven and machine learning based approaches. Moreover, while practical implementations of

machine learning algorithms for networks indeed exist for host-based applications (e.g., TCP [19],

video streaming [20]), or base-station-based use cases (e.g., scheduling [21]), the literature still

lacks a discussion and an analysis of how it is possible to practically deploy the algorithms,

collect real-time data and process it to enable new services in large-scale commercial networks.

The paper [22] discusses the role of network traces in 5G, but does not consider the real time

collection and processing of the traces.

Moreover, several papers report results on the prediction of mobility patterns of users in cellular

networks. The authors of [23], [24] use network traces to study human mobility patterns, with

the goal to infer large-scale patterns and understand city dynamics. The paper [25] proposes to

use a leap graph to model the mobility pattern of single users. With respect to the state of the

art, in this paper we focus on the prediction of the number of users at a base station level, in

order to provide innovative services to the users themselves, and propose a novel cluster-based

approach to improve the prediction accuracy.

The role of the MEC has also been discussed in the context of 5G networks, e.g., to perform

coordination [26] and caching [27], and to offer low-latency content and control applications to

the end users [5], [3], [28]. The MEC is indeed considered a key element in the deployment of

future autonomous driving vehicles, for which very short control loops will be needed [29]. A

few papers consider specific cases for the application of machine learning and big data techniques

at the edge, for example for intelligent transportation systems [30], or the processing of data

collected by internet-of-things devices [31], but, to the best of our knowledge, the usage of the

MEC to run data collection and machine learning algorithms for the prediction and optimization
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Location Time interval Number of eNBs

Campaign 1 San Francisco 01/31/2017 − 02/26/2017, every day from 3 P.M. to 8 P.M. 472

Campaign 2 Palo Alto, Mountain View 06/22/2018 − 07/15/2017, whole day 178

TABLE I: Anonymized datasets used in this paper

in 5G cellular networks has not been discussed in detail yet.

The edge has also been proposed for hosting controllers in cellular networks [32], [11],

[33]. As the SDN paradigm has become popular in wired networks [34], several software-

defined approaches for the RAN have been described in the literature [35], [36], [37], and the

telecom industry is moving towards open-controllers-based architectures for the deployment of

5G networks [11], as we will describe in Sec. IV. With respect to existing studies, in this paper

we propose to exploit the RAN controllers as proxies for the data collection in the RAN and the

enforcement of machine learning algorithm-based policies. This approach has been considered

in a wired-network context [38], but we believe that this is the first paper that studies it in a 5G

cellular network.

III. THE DATASET

This section describes the data that will be used in the evaluations in the remainder of the

paper. The traces we exploit are based on the monitoring logs generated by 650 base stations

of a national U.S. operator in two different areas, i.e., San Francisco and Palo Alto/Mountain

View, for more than 600000 User Equipments (UEs) per day, properly anonymized during the

collection phase. The base stations in the dataset belongs to a 4G LTE-A deployment, which

represents the most advanced cellular technology commercially deployed at a large scale. We

argue that, even if 5G NR networks will have more advanced characteristics than Long Term

Evolution (LTE) ones, this dataset can be seen as representative of an initial NR deployment

at sub-6 GHz frequencies in a dense urban scenario. We consider two separate measurement

campaigns, conducted in February 2017 in the San Francisco area and in June and July 2018 in

the Palo Alto and Mountain View areas. Table I summarizes the most relevant details of each

measurement campaign.

Given the sensitivity of this kind of data, we adopted standard procedures to ensure that

individuals’ privacy was not compromised during the data collection and the analysis. In partic-

ular, the records were anonymized by hashing the UEs’ International Mobile Subscriber Identitys

(IMSIs), which is the unique identifier that can be associated to a single customer in these traces.
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(c) Number of incoming handovers (summed over a 15-minute interval).

Fig. 1: Example of timeseries from the traces collected for 4 evolved Node Bases (eNBs) in the Palo Alto dataset over 5 days.

Moreover, for our analysis, we only used anonymized metrics that are based on aggregated usage

at multiple layers: first, we consider users’ data for each single cell (a cell is mapped to a sector

and carrier frequency), and, then, aggregate the cells associated to the same base station (i.e.,

with the RF equipment in the same physical location). In this way, no user can be singled out

by the results we present.

The traces used in this paper record a set of standardized events in LTE eNBs, mainly related

to users’ mobility. The raw data is further processed to construct time series of different quantities

of interest in each eNB at different time scales (from minutes to weeks): (i) the utilization of

the eNB, which is represented by the ratio of used and available Physical Resource Blocks

(PRBs); (ii) the number of incoming and outgoing handovers, for both X2 and S1 handover

events [39]; and (iii) the number of active UEs, obtained from context setup and release events.

The measurement framework we used also offered the possibility of logging other events and

extract other metrics, for example related to the latency experienced by the users, link statistics

(e.g., error probability), or different estimates of the user and cell throughput. The events

associated to these quantities, however, are reported less regularly and less frequently than those

we consider, therefore they do not represent a reliable source for the estimation of the network

performance. Fig. 1 shows an example of different timeseries for 4 eNBs in the Mountain

View/Palo Alto area, with a time step of 15 minutes. It can be seen that, even though daily

patterns can be identified, each eNB presents characteristic differences with the others.
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IV. RAN CONTROLLERS AS ENABLERS OF

MACHINE-LEARNING APPLICATIONS AT THE EDGE

The past and current generations of cellular networks were not designed to deploy machine

learning and artificial intelligence algorithms at scale. The main reason is that there are no

standardized interfaces that network operators can exploit to collect data from the base stations

and the equipments of different vendors, and/or to modify the behavior of the network according

to custom policies. Indeed, despite the Self-Organizing Network (SON) capabilities embedded

in the LTE standard [39], the deployment of autonomous networks is not widespread, and LTE

eNBs are usually self-contained appliances to which the telecom operators have restricted access.

Therefore, the control plane is usually decentralized, and the exchange of information among

eNBs is limited [11]. Accordingly, practical machine learning solutions that can deployed in a

4G LTE network are generally limited to SON parameters optimization for a few eNBs, generally

with offline training and/or optimization, thus without real-time insights, or to the application

of intelligent algorithms to the data that is collected in each single eNB, for example to predict

the channel gain [40], perform smart handovers [41] or scheduling [8], [21].

In order to make network management and operations more efficient, new design paradigms

have emerged in the 5G domain. The main trend is related to the disaggregation of the base

station (which in 3GPP NR networks is the Next Generation Node Base (gNB)). The 3GPP has

proposed different splits of the gNB protocol stack [10], so that it will be possible to deploy

a different RAN architecture, with the lower layers in Distributed Units (DUs) on poles and

towers, and the higher layers in Centralized Units (CUs) which can be hosted in a datacenter.

The pooling of CUs can enable more sophisticated orchestration operations, and energy savings,

as in a Cloud RAN (CRAN) setup [36]. On the other hand, the DUs that are deployed in the

RAN are simpler and possibly smaller than 4G full-fledged base stations.

The second trend is related to the deployment in the wireless RAN of SDN solutions based

on open and smart network controllers [42], which have already been adopted with success in

large wired backbone networks [34]. Along this line, different consortia of network operators

and equipment vendors (xRAN, Open RAN) are standardizing controller interfaces between the

CUs and new custom controllers that can be implemented and deployed by the telecom operators

themselves. As mentioned in [11], an architecture with a split between the distributed hardware

that performs data-plane-related functions and a more centralized software-based control plane
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Fig. 2: Proposed controller architecture for RAN control and machine learning at the edge.

can enable more advanced control procedures, thanks to the centralized view and the context

awareness, and thus this approach is quickly becoming a de facto standard for the deployment

of 5G cellular networks.

In this paper, we propose to exploit this new design paradigm for the 5G RAN to make

it possible to practically deploy intelligence in cellular networks, without the constraints and

limitations previously described for 4G LTE deployments. In the following paragraphs, we will

introduce the proposed architecture and describe how it can be integrated in the NR and xRAN

designs, following the mobile edge cloud paradigm. Moreover, we will propose a novel scheme

for the clustering of gNBs’ CUs to limit the interactions needed between neighboring controllers

and consequently reduce the control plane latency.

A. Proposed Architecture

The proposed architecture is a multi-layer control overlay which can be deployed on top of

3GPP NR networks, as shown in Fig. 2. It is composed by three main elements, corresponding

to different control-plane levels. The RAN part implements the 3GPP NR CUs and DUs, and

interfaces with the RAN controllers for coordination and advanced control plane functionalities,

as proposed in [11]. Each RAN controller is associated to a cluster of gNBs, and is deployed in the

MEC, to minimize the communication latency with the RAN. Finally, the network controller (e.g.,

Open Network Automation Platform (ONAP) [43]) orchestrates the RAN controllers and provides

application-layer services, and can be deployed in a remote cloud facility. In this design, the DUs

and CUs retain the data-plane functionalities [10], and some of the control-plane processes are

assigned to the RAN controllers, which can benefit from the cluster-based overview. For example,
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as proposed in [11], the RAN controllers can manage UE-level connectivity, by coordinating

handover decisions and performing load balancing, or can enforce QoS policies.

A multi-layer controller architecture combines the benefits of the scalability with a partially-

centralized view of the network. Each layer implements control functionalities with different

latency constraints, allowing the network to scale: the DUs schedule over-the-air transmissions

on a sub-ms basis, the RAN controllers may decide upon users’ association on a time scale of

tens of milliseconds, and, finally, the network controller can operate on multiple-second (or even

longer) intervals, for example to update the association between gNBs and RAN controllers. At

each additional layer, it is possible to support a larger number of devices (e.g., a DU controls

tens of UEs at most, while the RAN controller can be designed to handle hundreds of UEs),

and, given the more relaxed constraints on the decision time scale, it is possible to implement

more refined and complex decision policies, based on machine learning algorithms enabled by

the larger amount of data given by the clustered and/or centralized views.

1) RAN Controllers, Machine Learning and Data Collection: The RAN controllers play a

key role in this architecture: they perform both the aforementioned control plane tasks, and, at

the same time, offer the possibility of deploying machine learning techniques at the edge of the

network. A network operator can indeed use this overlay to manage the data collection from the

distributed gNBs and enforce policies based on the learning applied to this data. Notice that,

for some metrics, the controllers would not need explicit signaling for the data collection: for

example, if a controller manages the UEs sessions, as proposed in [11], then it is already aware

of the number of users connected to each gNB it controls.

The position of the RAN controllers in the overlay network strikes a balance between the

breadth of their point of view and the amount of data they need to collect and process and

the number of the user sessions they can handle. In general, as the number of base stations

associated to a controller grows (and, consequently, the number of controllers decreases, up to a

single controller), it is possible to perform more refined optimizations, given that the knowledge

of the state of the network is more complete. However, there is a limit to how much the data

collection can be centralized. Indeed, if the operator is interested in running real-time data-

driven algorithms, for example to decide upon the association of UEs and gNBs, then we argue

that a completely centralized architecture does not scale because of (i) the amount of data (for

example, related to channel measurements) that needs to be collected and (ii) the collection and

processing delay. For example, we observed that it is not possible to perform a real-time collection



10

and processing of a subset of the monitoring data streamed from the Palo Alto/Mountain View

network (178 base station) in a single virtual machine with 8 x86 CPUs at 2.1 GHz. On the other

hand, a completely distributed approach (as in a 4G LTE network) cannot exploit any centralized

view and/or enforce coordinated policies, as previously mentioned, and, as we will show in

Sec. VI with real network data, does not perform as well as the controller-based architecture for

the regression accuracy of the number of users in the network.

2) Technical Challenges: The usage of RAN controllers, however, introduces new technical

challenges. First, new standard interfaces and signaling between the gNBs and the controllers

will need to be defined.1 For example, in a completely distributed architecture (e.g., LTE), for

a handover there is a message exchange between neighboring base stations, and, then, the core

network [39], while, if controllers are used, the gNBs can interface directly with their controller

to exploit its global view. Once the actual specifications for RAN controllers will be completed,

it will be possible to also evaluate the signaling difference among these different architectures.

Another interesting problem is related to the association of controllers and gNBs. This issue has

already been studied for SDN controllers in wired networks [44], but wireless cellular networks

have characteristics that introduce new dimensions to this problem, mainly related to the higher

level of mobility of the endpoints of such networks, i.e., the UEs. If the RAN controllers are used

to manage users sessions and mobility events, then they will need to maintain a consistent state

for each user associated to the gNBs they control. Given that cellular users often move through

the area covered by the cellular networks, it becomes of paramount importance to minimize the

number of times a user performs a handover between two base stations controlled by different

controllers. In this case, indeed, the two controllers would need to synchronize and share the

user’s state, and this would increase the control plane latency, as also observed in case of inter-

controller communications in wired SDN networks [45]. Therefore, in the following section,

we will describe a practical data-driven method to perform the association between gNBs and

controllers, testing the proposed algorithm on the San Francisco and the Mountain View/Palo

Alto datasets.

B. Big-data Driven RAN Controller Association

The algorithm we designed aims at minimizing the number of interactions between gNBs

belonging to different controller (since any controller that is added in the control loop severely

1This effort is being pursued, among others, by the xRAN consortium [11]
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impacts the control plane latency), and enables a dynamic allocation of the base stations to the

different controllers. Moreover, it is based on the real data that the network itself can collect, thus

it represents another example of how it is possible to exploit real-time analytics to self-optimize

the performance.

1) Proposed Algorithm: We propose a method based on a semi-supervised constrained clus-

tering on a weighted graph based on the transition probabilities among base stations. The

algorithm is summarized with the pseudocode in Alg. 1. The input is represented by the timeseries

of X2 and S1 handovers for all the Ng gNBs in the set B, each tagged with the timestamp of the

event and the pair < source, destination > gNBs, and by the time step Tc to be considered for

the computation of the transition probability matrices (e.g., fifteen minutes or a day). Moreover,

the network operator can tune the number of controllers Nc according to the availability of

computational resources and the number of base stations and related UEs that each controller

can support. Every Tc, each controller p ∈ {0, . . . , Nc−1}, which has collected the timeseries of

events for its gNB i in the set of controlled gNBs Bp, will process this data to extract the number

of handovers Nho
i,j ,∀i ∈ Bp,∀j ∈ B, and will report this information to the higher-layer controller,

i.e., ONAP in the architecture described in Sec. IV-A. ONAP then aggregates the statistics from

each controller and builds a complete transition probability matrix H , where entry (i, j) is

Hi,j =
Nho
i,j∑Ng

j=1N
ho
i,j

. (1)

Then, consider the fully-connected undirected graph G = (V,E), where V = B is the set of

Ng vertices, and E is the set of edges that represent possible transitions among the gNBs. Each

edge ei,j is weighted by the sum of the transition probabilities between gNBs i and j, i.e.,

W (G)i,j = Hi,j +Hj,i, with W (G) the weight matrix, to account for all the possible transitions

(and thus interactions, and, possibly, message exchanges and state synchronizations) between the

two gNBs. In order to identify the set of gNB-to-controllers associations that minimize the inter-

controller communications, the proposed algorithm clusters the undirected graph G to identify

the groups of gNBs in which the intra-cluster interactions (i.e., handovers and transfer of user

sessions) are more frequent than inter-cluster ones.

We tested and considered different approaches for the clustering [46], [47], which, in this case,

has to satisfy two constraints: (i) the number of clusters should be an input of the algorithm, to

match the number of available controllers; and (ii) the size of the clusters (i.e., number of gNBs

per cluster) should be balanced, to avoid overloading certain controllers while under-utilizing
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Algorithm 1 Network-data-driven Controller Association Algorithm

1: for every time step Tc

2: distributed data collection step:

3: for every controller p ∈ {0, . . . , Nc − 1} with associated gNBs set Bp
4: for every gNB i ∈ Bp
5: compute the number of handovers Nho

i,j∀j ∈ B

6: end for

7: report the statistics on the number of handovers to ONAP

8: end for

9: dlustering and association step:

10: compute the transition probability matrix H based on the handovers between every pair of gNBs

11: define weighted graph G = (V,E) with weight W (G)i,j = Hi,j +Hj,i

12: perform spectral clustering with constrained K means on G to identify Nc clusters

13: apply the new association policy for the next time step

14: end for

Algorithm 2 Graph spectral clustering algorithm with constrained K means

1: input: graph G = (V,E) with weights W (G)

2: compute the degree matrix Di,i =
∑Ng

j=1W (G)i,j

3: compute the normalized Laplacian of G as L = I −D−1W (G)

4: create the matrix U ∈ RNg×Nc with the eigenvectors of L associated to the Nc smallest eigenvalues as columns

5: apply constrained K means on the rows of U to get Nc clusters

others. The first constraints rules out popular unsupervised graph clustering techniques based

on community detection algorithms, which are also generally applied to directed graphs [48].

Therefore, we propose to use a variant of standard spectral clustering techniques for graphs [49],

which relies on a constrained version of K-means to balance the size of the clusters. Alg. 2 lists

the main steps of the procedure.

Consider the degree matrix D, i.e., a diagonal matrix in which entry Di,i =
∑Ng

j=1W (G)i,j .

Then, it is possible to compute the normalized graph Laplacian as L = I−D−1W (G) and extract

the eigenvectors associated to the Nc smallest eigenvalues. The result is a matrix U ∈ RNg×Nc

with the eigenvector as columns. Each row of this matrix can be considered as a point in RNc ,

which can be clustered using K means [49]. The standard K means, however, does not generate

balanced clusters. Therefore, we replace this last step with a constrained K means algorithm,

which modifies the standard K means by adding constraints on the minimum and maximum size

of the clusters during the cluster assignment step. In this way, the cluster assignment problem

can be formulated as a linear programming problem [50]. The final result is a set of Nc clusters,
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(a) Clustering with Alg. 1 in San Francisco. (b) Clustering with Alg. 1 in Mountain View.

(c) Clustering with the positions of the gNBs in San Francisco. (d) Clustering with the positions of the gNBs in Mountain View.

Fig. 3: Network-data- and position-based clusters in San Francisco, using data from 2017/02/01 with Tc = 24 hours and Nc = 22,

and Mountain View/Palo Alto, with data from 2018/06/28 with Tc = 24 hours and Nc = 10. The colored dots represent the

base stations, with different colors associated to different clusters. The lines connecting the dots represent the weights in the

graph G of the edge between the two gNBs, with a thicker line representing a larger weight, i.e., sum of transition probabilities

between the gNBs. Finally, lines with the same color as the dots represent edges between vertices in the same cluster, and vice

versa for black lines.

and ONAP can apply the clustering policy to assign the gNBs to the respective controllers.

2) Evaluation with Real Data: Fig. 3a reports an example of the clustering applied to the

Ng = 472 San Francisco base stations, with Nc = 22 clusters and Tc = 24 hours, i.e., with one

clustering update per day, using the data collected in the previous day. The size of the clusters
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is constrained in {0.8Ng/Nc, . . . , 1.2Ng/Nc}. We also compare the network-data-based strategy

with a baseline, in which the constrained K means is directly applied to the latitude and longitude

of the gNBs, reported in Fig. 3c. Indeed, several approaches have been proposed in the literature

to cluster, for example, remote radio heads and Base Band Units (BBUs) into BBU pools,

according to different targets [51], [52], [53], but none of these focuses on the minimization of the

control plane latency. Therefore, as a baseline, we consider the basic clustering approach based

on the geographical position of the base stations. This method is static, and can be applied in

networks that do rely on data-driven approaches for configuration purposes, for example because

the operator does not collect and/or make use of real-time network analytics. In the absence of

this kind of data, we argue that geographic clustering is an approach in line with the goal to

minimize inter-controller interactions, given that users are expected to move among neighboring

base stations, which the geographical clustering will group under the same controller.

By comparing Figs. 3a and 3c, it can be seen that network-based clustering maintains a

proximity criterion (i.e., base stations which are close together are generally clustered together),

but this is not as strict as in the geographical one. Consider for example the base station at the

bottom right of the figures: it serves an area close to U.S. Route 101, and public transportation

stations, thus there are a lot of handovers happening directly from base stations in the downtown

area to that gNB. Consequently, the network-based approach clusters it with the purple cluster

in the city center, while the position-based strategy associates it to the other base stations at

the bottom of the map. In general, it can be seen that in Fig. 3c there are more large black

lines connecting the gNBs, meaning that base stations with a high level of interactions are

placed under different controllers in different clusters. Another example of this can be seen in

the comparison between Figs. 3b and 3d for the transitions along the Caltrain railway line that

crosses the map on the diagonal. In Fig. 3b, most of the lines along the railway are colored,

showing that intra-cluster handovers happen between the interested base stations, and vice versa

in Fig. 3d.

In order to further compare the location-based, static clustering and that obtained from the

network data, we compare the number of intra- and inter-controller handovers as a function of the

number of controllers2 (and thus clusters) Nc and the frequency of the updates. As mentioned

2The number of controllers an operator will need to deploy on a network will depend on the capacity of the controllers

themselves and the signaling they will need to support.
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(a) Number of intra- and inter-cluster handovers for 2017/02/02 in San

Francisco, Nc = 22.
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(b) Number of intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, Nc = 10.
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(c) Ratio between intra- and inter-cluster handovers for 2017/02/02 in

San Francisco, Nc = 22.
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(d) Ratio between intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, Nc = 10.

Fig. 4: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different

deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,

and for a more dynamic solution based on more frequent updates (i.e., Tc = 15 minutes).

Moreover, Fig. 4c also plots the ratio between the intra- and inter-cluster handovers. Notice

that the number of handovers reported in Fig. 4a refers to the events happened on February

2nd, while the clustering is based on the data from the previous day. For the 15-minute update
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(b) Mountain View/Palo Alto scenario, 2018/06/28.

Fig. 5: Ratio R between intra- and inter-cluster handovers as a function of the number of clusters Nc, with clustering based on

daily updates.

case, the clustering is updated every 15 minutes to reflect the statistics from the previous 15

minutes. However, as Fig. 4a shows, updating the clusters with a daily periodicity, using data

from the previous day, does not results in significantly degraded performance with respect to

the 15-minute updates case. Notice also that a cluster update has some cost in terms of control

signaling between the gNBs and the controllers. Moreover, the daily-based update builds the

graph and the clustering according to a more robust statistics, i.e., based on the transitions for

the whole day. This is particularly evident if we consider the example in Figs. 4b and 4d, which

report the same metrics but for a whole day in the Mountain View/Palo Alto area and Nc = 10

clusters. As it can be seen, at night, when the number of handovers is low, the clustering with

update step Tc = 15 minutes exhibits a very high variation in the ratio between intra- and

inter-cluster handovers, and in some cases has a performance which is similar to that of the

geographic case, while the curve for the daily-based update shows a more stable behavior and

better performance.

Finally, in Fig. 5 we present the ratio R between intra- and inter-cluster handovers by con-

sidering Tc = 24 hours as fixed, and changing the number of clusters Nc. For each value of

Nc, we run multiple times the clustering algorithms, to average the behavior of K means and

provide confidence intervals. It can be seen that the gain of the network-data-based solution

over the position-based one is almost constant, especially as the number of clusters grows, with

an average increase of the ratio R of 45.38% for the San Francisco case and 42.62% for the

Mountain View/Palo Alto scenario. The behavior in the two scenarios with Nc = 2, however, is

different: while in the San Francisco case Nc = 2 yields the largest difference for the value of R

between the network-data- and the location-based clustering, in the Mountain View context Nc

corresponds to the minimum difference. This is probably due to the difference in the geography
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of the two areas, as shown in Fig. 3: the San Francisco dataset covers a much larger number of

base stations than the other one, and the mobility patterns of the users are less regular, thus the

clustering based on the network-data can find a better solution than the location-based one.

To summarize, we showed that the data-driven clustering (i) adapts to the users mobility, in

different scenarios, thus reducing the inter-controller interactions and, consequently, the control

plane latency, and (ii) can be updated on a daily basis without significant performance loss with

respect to a more dynamic solution.

V. ROUTE OPTIMIZATION WITH NETWORK KPIS

In this section, we describe a possible use case of the architecture described in Sec. IV, in

which we apply machine learning not to perform network optimizations, but to provide innovative

services to the customers of a cellular network. Cellular network data is indeed generally used

to monitor and optimize the network itself, for example by enabling self-organizing capabilities,

as shown in Sec. IV for the controller to base stations association, with the goal to improve the

overall performance and reduce operating costs. At the same time, however, mobile operators

can exploit the insights given by this kind of data to offer new services to their end users, thus

increasing the customer satisfaction and the value of their deployments.

In this use case, we consider a vehicle that has to travel from point A to point B in an area

covered by cellular service. While on the journey, the passengers may want to participate in a

conference call, or, if not driving, surf the web or stream multimedia content. Therefore, given

the choice of multiple routes with similar Estimated Time of Arrivals (ETAs), the passengers may

prefer to choose an itinerary with a slightly higher ETA but with a better network performance,

because, for example, it crosses an area with a better coverage, or with fewer users. In particular,

different metrics (throughput, outage probability) may be of interest to different customers,

according to the application they plan to use. This becomes particularly relevant in view of

the envisioned transition to an autonomous driving future, in which active driving might not be

required and working or getting entertained in the car will become a common trend.

In order to address this need, cellular network operators can exploit the intelligence the network

data gives them to offer predictive services to the users, to inform them on which is the best route

for their journey, for example through a smartphone application. The architecture we described

in Sec. IV can be used to efficiently deliver this service: the application interfaces with the

higher-layer controller, e.g., ONAP, which computes the possible routes, and then queries the
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(a) Map of the routes. The dots represent the visited base stations. Notice that, for

route 2 (the red one), several base stations are shared with either the blue or the green

routes.

Route Duration [minutes]

R1 24

R2 25

R3 26

R4 39

(b) Route duration, obtained using Google Maps.

Fig. 6: Example of different routes in the San Francisco area to move from point A to point B.

local controllers that would be visited in each route in order to retrieve the relevant predicted

metrics. Then, the routes are ranked, and the user receives the routing information. As it can

be seen, the core role is played by the edge controllers and by the quality of their prediction.

In the remainder of the paper, we will show how deploying the machine learning algorithms in

edge controllers can help improve the quality of the prediction.

First, however, let’s consider an example using the dataset collected in the San Francisco area

in February 2017. Fig 6 shows three possible routes with a similar ETA and a fourth itinerary

with a longer travel time, that lead from the South to the North part of San Francisco. The

routes are obtained from Google Maps, and the travel time for each route is reported in Fig. 6b.

As it can be seen from the map, the blue, green and pink routes travel across different areas in

terms of base station density, but also of user density, given that the pink route goes through

downtown San Francisco. According to the performance of the network on each path, and the

constraints on the ETA, the user may prefer the fastest itinerary, or trade some travel time for a

a higher throughput, or lower call drop probability.

As mentioned in Sec. III, the throughput cannot be directly and reliably collected from the

measurement framework we used, which provides instead network KPIs and exact counters for
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mobility-related quantities such as the number of active users. Therefore, we estimate the user

throughput as inversely proportional to the number of active users. In particular, we express the

user throughput at base station i, time t and user’s position p as

Si(t, p) =
Û(t)

N i
u(t) + 1

N i
s

Biρi(p), (2)

where N i
u(t) is the number of users, N i

s the number of sector, Bi is the bandwidth and ρi(t, p)

is the spectral efficiency. Û(t) ∈ [0, 1] is the maximum PRB utilization, defined as the median

over the considered dataset of the maximum daily PRB utilization of all the base stations, and

in this case it is equal to 0.91. Both N i
s and Bi are known, given the network configuration. The

spectral efficiency ρi(p), instead, depends on the mapping of the estimated Signal to Interference

plus Noise Ratio (SINR) of the user in position p to the Channel Quality Information (CQI),

using the map in [54], and then of the CQI to the spectral efficiency, according to 3GPP mapping

from [55, Table 7.2.3-1]. The SINR is computed as

Γi(p) =
P i
txL

i(p)

I(p) +BiN0

, (3)

where P i
tx is the transmitted power of base station i, Li(p) the pathloss, computed as a function

of distance and frequency using the equations in [56], I(p) the interference, and N0 = −174

dBm/Hz the thermal noise. For the interference, we consider the set of all the base stations

except i, i.e., Br {i}, and, for each of them, compute the received power in position p.3 Then,

if the power is above a certain threshold (e.g., 10 dB below the thermal noise), it is added to

the total count for I(p).

Fig. 7 reports the value of different throughput-related metrics for the three itineraries with

similar travel time, and identifies the best route according to each metric. The average throughput

is measured as the average of the user throughput over the drive time for each itinerary, i.e.,

Ŝ =
1

D

D∑
d=1

Si(pd)(td, pd), (4)

where D it the number of points sampled along the itinerary (e.g., provided by Google Maps),

each at time td and with position pd, and i(pd) is the index of the closest base station to the

position pd. The maximum outage duration is given by the maximum time interval on the journey

3This is a worst case scenario, since the base station may not be always transmitting, or may be using beamforming to steer

the power towards its users and not omnidirectionally
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Feb. 23rd, 19:00 Feb. 24th, 19:00 Feb. 24th, 19:20

Route R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

Ŝ [Mbit/s] 1.93 2.51 2.36 2.74 1.72 2.00 2.28 2.89 2.05 2.49 1.98 2.86

Do,max [s] 133.47 157.8 172.5 171.2 152.4 157 148.8 169.1 152.1 123.7 172.5 116.7

Fig. 7: Average throughput Ŝ and maximum outage duration Do,max on the four itineraries from Fig. 6, for different departure

times in February 2017. For the three routes with a similar duration, the colored cells represent the best route for the metric of

interest.

in which the user is offered a zero throughput, for example, because it is too far from the base

stations, or the interference from the neighbors is too strong, and thus CQI 0 is selected. A

high average throughput is desirable for web browsing, video and audio streaming, while a short

maximum outage duration is preferable, for example, to attend conference calls.

As seen in Fig. 7, the fastest route (i.e., route 1, in blue), is not always the one offering the

best service in the three departure times considered. Let’s first consider the first three routes, i.e.,

those with a similar travel time, for which the user would not need to choose between network

performance and desired ETA. In this case, the best route changes at different departure times:

for the throughput, on Feb. 23rd, 19:00, route 2 (red) is better than the others, while in the next

day at the same time the best itinerary is route 3 (green). When considering also the longest

route, which still leads from the origin to the destination, but takes 50% more time than the

shortest, it can be seen that it always offers the highest average throughput, but, in some cases,

is one of the worst in terms of maximum outage duration.

This example shows that, according to the users’ needs, it is possible to identify and select

different routes that have a different performance in terms of throughput and outage. Moreover,

the routes are ranked differently according to various departure times. Therefore, simply applying

the analytics given by the average statistics from the previous days may not yield reliable results

in terms of routes ranking. This makes the case for adopting medium-term prediction techniques

to forecast the expected value of the metrics in the time interval in which the user will travel,

based on the actual network conditions for the same day.

VI. PREDICTING NETWORK KPIS USING CONTROLLERS

In this section, we discuss the accuracy that can be achieved in the prediction of the number

of users in each cell. This metric, as shown in Sec. V, can be used to predict useful KPIs
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such as the user throughput and the outage duration. In the following paragraphs, we will first

discuss the quality of the prediction with several machine learning algorithms by considering

a single cluster among those presented in Fig. 3a for San Francisco, and then will extend the

discussion to all the clusters, using the most promising approaches identified for the first cluster.

The main comparison will be between the accuracy of the prediction with methods that only

use local information, i.e., in which each base station is a separate entity and has available only

its own data for the training of the machine learning algorithm, and techniques that exploit the

architecture described in Sec. IV to collect and process data, and thus for which it is possible

to perform predictions based on the joint history of multiple base stations associated to each

controller.

A. Data Preprocessing

For the prediction results, we used the San Francisco dataset, since at the time of writing it

contained a larger number of samples and base stations than the Palo Alto/Mountain View one.

We sampled the number of users in each base station with a time step Ts = 5 minutes, and

divided the dataset into a training set (which will be used for k-fold cross validation) and a test

set. The training set is based on the interval from January 31st to February 20th, while the test

set goes from February 21st to February 26th.

For base station i ∈ B, with B the set of base stations in San Francisco, consider a multi-step

ahead prediction of the number of users N i
u(t + L) at times t + 1, . . . , t + L (where L ≥ 1 is

the look-ahead step of the prediction), given the real-time data before time t. The features we

identified are (i) the past W samples of the number of users (where W is the window of the

history used for the prediction), i.e., N i
u(t+τ), τ ∈ [−W +1, 0]; (ii) an integer h(t) ∈ {0, . . . , 4}

that represents the hour of the day (from 3 P.M. to 8 P.M.); and (iii) a boolean b(t) that indicates

whether the selected day is a weekday. We also tested the cell utilization and the number of

handovers as possible features, however they showed small correlation with the prediction target.

For each day, given the discontinuities of the collected data, we discard the first W samples,

thus the actual size of the training (Ntr) and test (Nte) sets depends on the value of W .

For the local-based prediction, in which each base station predicts the future number of users

based on the knowledge of its own data, the training and test set are composed by the feature

matrix X ∈ RNi,3W , i ∈ {tr, te}, in which each row is a vector [N i
u(t−W+1), h(t−W+1), b(t−

W+1) . . . , N i
u(t), h(t), b(t)], and by the target vector y ∈ RNi,1, i ∈ {tr, te}. For the cluster-based
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method, instead, the goal is to predict the vector of the numbers of users for all the base stations

in the cluster. Therefore, for the set Cd = id, . . . , jd ⊂ B with the Nd
b base stations of cluster d,

each row of the target matrix Y ∈ RNi,N
cl
b , i ∈ {tr, te} is a vector [N id

u (t+L), . . . , N jd
u (t+L). The

feature matrix X ∈ RNi,W (Ncl
b +2), i ∈ {tr, te} is composed in each row by a vector with the form

[N id
u (t−W+1), . . . , N jd

u (t−W+1), h(t−W+1), b(t−W+1), . . . , N id
u (t), . . . , N jd

u (t), h(t), b(t)].

The values of the numbers of users in the training and test sets are transformed with the

function log(1+x) and scaled so that each feature assumes values between 0 and 1. The scaling

is fitted on the training set, and then applied also to the test set. For the evaluation of the

performance of the different methods and prediction algorithms, we use the Root Mean Squared

Error (RMSE), defined for a single base station i as σi =
√

1/Nte

∑Nte
t=1(yi(t)− ŷi(t))2, with yi

the time series of the real values for the number of users for base station i, and ŷi the predicted

one.

B. Algorithm Comparison

We tested several machine learning algorithms tailored for prediction, i.e., the Bayesian Ridge

Regressor (BRR) for the local-based prediction, and the Gaussian Process Regressor (GPR)

and Random Forest Regressor (RFR) for both the local- and the cluster-based predictions,

using the implementations from the popular open-source library scikit-learn [57].4 For each

of these methods, we considered different values of W ∈ {1, . . . , 10} and predicted at different

future steps L ∈ {1, . . . , 9}, i.e., over a time horizon of 45 minutes. 3-fold cross-validation

was performed for each method, L and W to identify the best hyperparameters, among those

summarized in Table II. The split in each fold is done using the TimeSeriesSplit of scikit-

learn, i.e., without shuffling, and with increasing indices in each split, to maintain the temporal

relation among consecutive samples.

The BRR combines the Bayesian probabilistic approach and the ridge L2 regularization [58].

The Bayesian framework makes it possible to adapt to the data, and only needs the tuning of

the parameters α and λ of the Gamma priors. However, it does not generalize to multi-output

prediction, thus we applied this method only to the local-based scenario.

4An approach based on neural networks was also considered, but, due to the reduced size of the training set, underperformed

with respect to the other regression methods.
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Regression method Hyperparameters

Bayesian Ridge Regressor [58] α ∈ {10−6, 10−3, 1, 10, 100}, λ ∈ {10−6, 10−3, 1, 10, 100}

Gaussian Process Regressor [59] α ∈ {10−6, 10−4, 10−2, 0.1}, σk ∈ {0.001, 0.01}

Random Forest Regressor [60] Number of trees Nrf ∈ {1000, 5000, 10000}

TABLE II: Values of the hyperparameters of the different regressors for the k-fold cross-validation.

The GPR is a regressor that fits a Gaussian Process to the observed data [59]. The prior has

a zero mean, and the covariance matrix described by a kernel. In this case, we chose a kernel

in the form

k(xi, xj) = σ2
k + xi · xj +

(
1 +

d(xi, xj)
2

2αl2

)−α
+ δxixj , (5)

i.e., the sum of a dot product kernel, that can model non-stationary trends, a rational quadratic

kernel with l = 1 and α = 1, and a white kernel, that explains the noisy part of the signal. The

GPR can be used for both single-output and multi-output regressions, thus we tested it with both

the local- and the cluster-based approaches.

Finally, the RFR is a classic ensemble method that trains Nrf regression trees from bootstrap

samples of the training set and averages their output for the prediction [60]. The only hyperpa-

rameters to be tuned are (i) the number of trees Nrf , for which a higher value implies better

generalization properties, but also longer training time; and (ii) the number of random features

to sample when splitting the nodes to build additional tree branches, which is set to be equal

to the number of features for regression problems. Similar to the GPR, it supports prediction of

scalars and vectors.

For the comparison between the aforementioned regressors, we consider the cluster d = 0 with

N0
d = 22 base stations in the San Francisco area. We assume that the cluster is stable throughout

the training and testing period. In a real deployment, when the base station association to the

available controllers changes, a re-training will be needed, together with additional signaling

between the controllers, to share the data related to the base stations whose association was

updated.

In order to compare the local- and the cluster-based methods, we report in Fig. 8 the average

RMSE σ̂ = Ei∈C0 [σi] of the base stations in the set C0 associated to cluster 0. As expected, the

RMSE increases with the look-ahead step L. Among the local-based methods, the BRR gives

the best results for all the values of the look-ahead step L, with a gain of up to 18% and 55%
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(b) A different window W is selected for each method and look-ahead

step L to minimize the RMSE σ̂. The values of W are reported in

Table III.

Fig. 8: RMSE σ̂ for different local- and cluster-based prediction methods, as a function of the look-ahead step L, and for

different windows W .

Look-ahead step L 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2

cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE III: Values of W for the plot in Fig. 8b for the BRR and the cluster-based GPR

with respect to the GPR and RFR for L = 9. The GPR, instead, is the best among the cluster-

based techniques, with an improvement up to 50% from the RFR (for L = 1). When comparing

the local- and the cluster-based methods, the latter performs better, especially as the look-ahead

step increases, since the curve of the RMSE for the cluster-based GPR flattens around σ̂ = 14.8,

while that for both the BRR and the local-based GPR continues to increase. In this case, instead,

for small values of L the performance of local- and cluster-based methods is similar.

Table III reports the values of the window W used in Fig. 8b for the two best performing

methods, the BRR and the GPR. By comparing Figs. 8a, in which the window W is fixed,

and 8b, where W is selected for each step L to yield the smallest RMSE σ̂, it can be seen that

the difference is minimal for the best performing methods (i.e., below 5%), while it is more

significant for the local-based RFR.

Given the promising results of the cluster-based approach on the first cluster, we selected

the best performing local- and cluster-based methods, i.e., respectively, the BRR and the GPR,

and performed the prediction on all the clusters reported in Fig. 3a. The results are reported in
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Fig. 9: Cluster-based GPR vs local-based BRR for 12 other clusters.

Fig. 9 for each single cluster. The cluster-based method always outperforms the local-based one,

and, in most cases, also exhibits a smaller RMSE for small values of the look-ahead step L,

contrary to what happens for cluster 0. The reduction in the average RMSE over all the clusters

Eclusters[σ̂] is 18.3% for L = 1 (from Eclusters[σ̂] = 7.24 to Eclusters[σ̂] = 6.11) and increases up

to 53% for L = 9 (from Eclusters[σ̂] = 17.42 to Eclusters[σ̂] = 11.34).

C. Discussion

The results presented in Figs. 8 and 9 show that the cluster-based method is more capable

than local-based ones to capture the user dynamics in the cellular network. Moreover, the spatial

dimension has more impact on the quality of the prediction than the temporal one. Indeed, while

by changing W the RMSE for the GPR and BRR improves by up to 5%, when introducing the

multi-output prediction with the GPR the RMSE decreases by up to 50%. In this example, we are

considering the number of users at a cell level, which is different from the prediction of single-

user mobility patterns [25]. In this case, indeed, the possible transitions between neighboring

cells are limited by the geography of the scenario, and by the available means of transport.

Therefore, there exists a spatial correlation between the number of users in the neighboring base

stations and the number of users in the considered base station at some time in the future, given

that the users flows are constrained by the aforementioned factors.

Nonetheless, there exist still some limitations to the accuracy of the prediction of the number

of users. Fig. 10 reports and example of the predicted (for L = 3, i.e., 15 minutes) and true

time series for two different base stations, with a high and low number of users. As it can be
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Fig. 10: Example of predicted vs true time series, for L = 3 (i.e., 15 minutes ahead), W = 3 and the cluster-based GPR on

two base stations for cluster 0.

seen, the true time series has some daily patterns, but are also quite noisy. As a consequence,

the predicted time series manage to track the daily pattern, but cannot predict the exact value

of the number of users. This is more evident when the number of UEs is low, as in Fig. 10b,

which also exhibits smaller daily variations.

Besides the use case described in Sec. V, the prediction of the number of users in a base

station can be used to optimize the performance of the network in a number of different ways:

for example, it can enable predictive load-balancing, bearer pre-configuration, scaling of RAN

resources, sleeping periods for base stations, and so on. We believe that the increase in the

prediction accuracy that the cluster-based method yields can be beneficial to practically enable

these anticipatory and prediction-based optimizations.

VII. CONCLUSIONS

Machine learning, software-defined networks and edge cloud will be key components of the

next generation of cellular networks. In this paper we investigated how these three elements

can be jointly used in the system design for 5G networks, providing insights and results based

on a dataset collected from hundreds of base stations of a major U.S. cellular network in two

different cities for more than a month.

After reviewing the relevant state of the art, we investigated how it is possible to practically

introduce machine learning and big-data-based policies in 5G cellular networks. We proposed an

overlay architecture on top of 3GPP NR, in which multiple layers of controllers with different

functionalities are used to collect the data from the RAN, process it and use it to infer intelligent

policies that can be applied to the cellular network. Moreover, we discuss the problem of how
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to associate controllers to base stations through clustering, and propose a data-driven solution

that limits the interactions among different controllers to minimize the need for inter-controller

synchronizations and reduce the control plane latency.

Next, once again using real data from a real network, we describe a use case that can be

enabled by the proposed architecture. Thanks to the insights provided by machine learning

predictions in the controllers, the cellular operator can offer predictive services to its users, for

example by recommending different driving itineraries to improve the user experience in the

network. We illustrate a real example in the San Francisco area, showing how the fastest route

does not necessarily yield the best throughput, or the minimum outage, and that the best itinerary

according to these metrics (which we derive from the number of users in each base station) may

differ according to the departure time, so that a prediction-based approach is useful.

Finally, we report an extensive set of results related to the prediction accuracy of the number of

users in base stations, using one month of data collected from the San Francisco base stations.

In particular, we show how the usage of the architecture proposed in this paper can reduce

the prediction error. With respect to a solution in which each base station tries to perform the

regression based solely on its own data, as realized by a completely distributed architecture

(e.g., in LTE), the controller-based design makes it possible to aggregate data from multiple

neighboring base stations, and to predict a vector with the number of users in the nodes associated

to the controller. This captures the spatial correlation given by users’ mobility, and, especially

when increasing the temporal horizon of the prediction, reduces the RMSE by up to 53%.

We believe that this paper addresses several issues related to the practical deployment of

machine learning techniques in 5G cellular networks, providing results and conclusions based

on a real-network dataset. As future work, we will test different prediction algorithms (e.g.,

neural networks) to understand if it is possible to improve even more the prediction accuracy,

and will extend the regression to other relevant metrics in the network (e.g., the number of

handovers, the utilization), to verify the limits of what can be actually predicted in a cellular

network.
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