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Why do we need a new architecture? - 1

Ultra-low latency

Enhanced Mobile 
Broadband

Cyber-Physical 
Systems - IoT

5G supports a diverse 
and heterogeneous set 
of use cases
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Need a flexible and programmable
network architecture
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Why do we need a new architecture? - 2

Network complexity is increasing

More devices
More spectrum

Complex 
protocol stacks

Need an automated and intelligent
network architecture
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Toward open, programmable cellular architectures

• Limited re-configurability and adaptability

• Limited coordination among network nodes

• Vendor lock-in
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Toward open, programmable cellular architectures

Based on

1. Virtualization

2. Disaggregation and open interfaces

3. Programmable network nodes and control loops
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Packet 
in

Open Architecture
Open, disaggregated, programmable RAN

Packet 
out

Distributed Virtualization Layer

RAN Function 1 RAN Function 2 RAN Function N Radio

Closed Loop Control

Open 
interfaces



8

Virtualization

Virtual Network Functions (VNF)

• Provide and execute network services

VNF 1 VNF 2 VNF N. . .

NFV Infrastructure (NFVI)

• Provide physical hardware to host VMs

VM 1 VM 2 VM N. . .

Virtualization Layer

Physical Hardware

Network Orchestrator

• Instantiation and management of 
Virtual Machines (VMs)

• Resource orchestration
• VNF orchestration

VNF 
Instances

VNF 
Manager

NFVI 
Resources

VIM 
Manager

Networking functionalities are implemented in software, 
and run on white-box hardware
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3GPP split 7.2
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Disaggregation and open interfaces

The RAN and Core network nodes are split into multiple network 
functions, connected through standardized interfaces

Open 

interfac
es
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Programmable network nodes and control loops

Packet 
in

Packet 
out

Virtualization Layer

RAN Function N

Controller

Data, analytics, telemetry Control commands, policies

Closed-loop control

1. Implement programmable control logic
2. Embed intelligence in the network
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5G open, programmable, and virtualized architecture

Core Network • Data gateway with the Internet

Evolved Packet Core (EPC)

PGW/SGW – data gateway

Core network for LTE and NR non-standalone

MME – mobility management

HSS – billing and subscriptions

Edge Cloud

Edge caching

Intelligent controllers

• Radio transmissions for data and controlRadio Access Network • Mobility, scheduling, access
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MAC
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PDCP R

R
C

eNB stack

Network slicing
• differentiated and adaptive service
• QoS provisioning
• network sharing
Network management

UPF

5G Core
Core network for NR standalone

Service-based 
architecture
with network 
functions 
connected by 
APIs

AMF
access and mobility

Control plane 
network 
functions

AUSF
authentication

…

User plane 
network 
functions

UPF
packet gateway

• Manage user identity, subscriptions and mobility

NR 0.41 – 7.125 GHz and 24.25 – 52.6 GHz Flexible frame structure Flexible deployment
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Central Unit (CU)
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MAC
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Higher layers
Control, encryption, QoS

Lower layers
Scheduling, modulation

gNB stack with CU/DU/RU split

Radio Unit (RU)
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A B S T R A C T

Fifth generation (5G) cellular networks will serve a wide variety of heterogeneous use cases, including mobile
broadband users, ultra-low latency services and massively dense connectivity scenarios. The resulting diverse
communication requirements will demand networking with unprecedented flexibility, not currently provided
by the monolithic black-box approach of 4G cellular networks. The research community and an increasing
number of standardization bodies and industry coalitions have recognized softwarization, virtualization, and
disaggregation of networking functionalities as the key enablers of the needed shift to flexibility. Particularly,
software-defined cellular networks are heralded as the prime technology to satisfy the new application-driven
traffic requirements and to support the highly time-varying topology and interference dynamics, because
of their openness through well-defined interfaces, and programmability, for swift and responsive network
optimization. Leading the technological innovation in this direction, several 5G software-based projects and
alliances have embraced the open source approach, making new libraries and frameworks available to the
wireless community. This race to open source softwarization, however, has led to a deluge of solutions whose
interoperability and interactions are often unclear. This article provides the first cohesive and exhaustive
compendium of recent open source software and frameworks for 5G cellular networks, with a full stack
and end-to-end perspective. We detail their capabilities and functionalities focusing on how their constituting
elements fit the 5G ecosystem, and unravel the interactions among the surveyed solutions. Finally, we review
hardware and testbeds on which these frameworks can run, and provide a critical perspective on the limitations
of the state-of-the-art, as well as feasible directions toward fully open source, programmable 5G networks.

1. Introduction

The potential of 5th generation (5G) communications is being un-
leashed into the fabric of cellular networks, enabling unprecedented
technological advancements in the networking hardware and software
ecosystems [1]. Applications such as virtual reality, telesurgery, high-
resolution video streaming, and private cellular networking—just to
name a few—will be freed from the shadows of the spectrum crunch
and resource-scarcity that have haunted 4th generation (4G) networks
for years. By unbridling the sheer power of these applications, 5G
will usher unparalleled business opportunities for infrastructure and
service providers, and foster unrivaled cellular networking-based inno-
vation [2].

The journey to achieve the 5G vision, however, is still beset by many
research and development challenges. Traditional cellular networks are

I This work was supported in part by the US National Science Foundation under Grant CNS-1618727 and in part by the US Office of Naval Research under
Grants N00014-19-1-2409 and N00014-20-1-2132.
< Corresponding author.
E-mail addresses: l.bonati@northeastern.edu (L. Bonati), m.polese@northeastern.edu (M. Polese), s.doro@northeastern.edu (S. D’Oro),

s.basagni@northeastern.edu (S. Basagni), t.melodia@northeastern.edu (T. Melodia).

characterized by an inflexible and monolithic infrastructure, incapable
of meeting the heterogeneity and variability of 5G scenarios and the
strict requirements of its applications [3]. Now more than ever, the
limitations of the ‘‘black-box’’ approaches of current cellular deploy-
ments, where hardware and software are plug-and-play with little or
no reconfiguration capabilities, are manifest. The lack of full control
of the vast amount of available resources and network parameters
makes it hard to adapt network operations to real-time traffic condi-
tions and requirements, resulting in ineffective resource management,
sub-optimal performance, and inability to implement Connectivity-as-
a-Service (CaaS) technologies such as private cellular networking [4].
The inflexibility of current approaches is even more harmful in 5G
scenarios, where densification and the need for directional commu-
nications call for fine-grained network control [5–7], resources are

https://doi.org/10.1016/j.comnet.2020.107516
Received 19 May 2020; Received in revised form 29 July 2020; Accepted 25 August 2020

Website: open5g.info
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- a reference architecture for programmable 5G

Service Management and Orchestration Framework

Non-real-time RIC

Near-real-time RIC

O-CU (control plane) O-CU (user plane)

O-DU

O-RU

O-eNB

RAN
O1 interface O1A1 interface

E2 interface

E2

E2

E1 

interface
F1-c interface F1-u interface

Open Fronthaul interfaces

1. Open, standardized 
interfaces

2. Disaggregated RAN

3. Open-source 
contributions

4.RAN Intelligent Controllers
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Intelligent Control Loops
Control and learning objective Input data Timescale

Service Management and Orchestration (SMO)
non real-time RIC

A1

CU

DU

E2

F1

Open FH

O1

RU

Mobile devices

gNB

Policies, models, slicing Infrastructure-level 
KPIs

Non real-time
> 1 s

User Session Management
e.g., load balancing, handover

CU-level KPIs
e.g., number of 

sessions, PDCP traffic

Near real-time
10-1000 ms

Medium Access Management
e.g., scheduling policy, RAN 

slicing

Radio Management
e.g., resource scheduling, 

beamforming

Device DL/UL Management
e.g., modulation, interference, 

blockage detection

Architecture

MAC-level KPIs
e.g., PRB utilization,

buffering

Real-time
< 10 ms

MAC/PHY-level KPIs
e.g., PRB utilization, 
channel estimation

I/Q samples
Real-time
< 1 ms

Scale

> 1000 
devices

> 100 
devices

> 100 
devices

~10 
devices

1 device

Near real-time 
RIC

Near real-time
10-1000 ms

Currently supported by O-RAN

For further study or not supported
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Use cases for intelligent and programmable 5G networks

Data-driven clustering and 
load prediction

Scheduling selection with 
deep reinforcement learningReal-world dataset from AT&T with 

>600 base stations

First O-RAN demonstration with white-
box real-time RAN control Colosseum
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Data-driven clustering and prediction Data-driven clustering 
and load prediction Scheduling selection 

with deep 
reinforcement learning

The dataset:

• 472 eNBs in San Francisco

• February 2017, every day, 3 P.M. to 8 P.M.

• 178 eNBs in Palo Alto

• June-July 2018, 24h

• 4G LTE deployment

• Data collected:

• Resource utilization

• Number of incoming and outgoing handovers

• Number of active UEs

patterns, with the goal to infer large-scale patterns and under-
stand city dynamics. Reference [16] proposes to use a leap
graph to model the mobility pattern of single users. With
respect to the state of the art, in this paper we focus on the
prediction of the number of users associated to a base station,
in order to provide innovative services to the users themselves,
and propose a novel cluster-based approach to improve the
prediction accuracy.

III. THE DATASET

This section describes the dataset that will be used to
train and test the machine learning algorithms discussed in
this paper. The network traces we utilize are based on the
monitoring logs of 472 base stations of a national U.S.
operator in the San Francisco area, for more than 600000 User
Equipments (UEs) per day, properly anonymized during the
collection phase. The base stations in the dataset belongs to a
4G LTE-A deployment, which at the time of writing represents
the most advanced cellular technology commercially deployed
at a large scale. We argue that, even if 5G NR networks will
have more advanced characteristics than Long Term Evolution
(LTE), this dataset can represent a first NR deployment at
sub-6 GHz frequencies in a dense urban scenario. The mea-
surement campaign was run in February 2017 (01/31/2017 �
02/26/2017), with monitoring logs collected every day from
3 P.M. to 8 P.M.. Fig. 1 shows an example of time series
for different metrics from 4 LTE evolved Node Bases (eNBs),
with a time step of 5 minutes.

Given the sensitive nature of this data, we applied stan-
dard policies to make sure that individuals’ privacy was not
undermined with the data collection and processing. In this
regard, the International Mobile Subscriber Identity (IMSI)
(i.e., the identifier associated to a single user in the traces)
of each UE was anonymized through hashing. Additionally,
the analysis in this paper only uses aggregate metrics, which
do not single out the behavior of any particular user. First,
user data is grouped for each cell (i.e., mapped to a sector
and carrier frequency) and, then, the data for the cells in the
same base station (i.e., with the RF equipment in the same
physical location) is aggregated again.

The traces used in this paper register a number of standard-
ized events in LTE eNBs, mostly involving the mobility of
users. The raw data is further processed to define time series
of different quantities of interest in each eNB at different
time scales (from minutes to weeks), such as (i) the eNB
utilization, represented by the ratio of used and available
Physical Resource Blocks (PRBs); (ii) the number of incoming
and outgoing handovers; and (iii) the number of active UEs,
i.e., connected and involved in a data exchange. Other metrics
could also be extracted, for example related to the user latency,
link statistics (e.g., error probability), or different estimates
of the user and cell throughput, but the logs reporting these
quantities are less frequent and regular than those we consider,
and do not represent an accurate source for the estimation of
the network performance.
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(c) Number of incoming handovers (summed over a 15-minute interval).

Fig. 1: Example of time series from the traces collected for 4 eNBs in the
San Francisco dataset over 7 days.

IV. PREDICTING THE NUMBER OF USERS IN BASE
STATIONS

In the following paragraphs, we will present procedures and
results for the prediction of the number of active users in
the base stations of a cellular network. This information can
be exploited to predict other relevant KPIs, e.g., the network
load, or the user throughput. We will compare the accuracy
of the prediction according to two different methods. The
first uses only local information (i.e., available in each single
base station) to perform the training and the prediction. This
strategy can be used in networks where there is no or limited
coordination among base stations, which are complete and
self-contained pieces of equipment, as in 4G LTE networks.
The second strategy, instead, relies on the availability of shared
information from a set of neighboring base stations, given
that it aims at jointly predicting the number of users in each
one, based on the common history of the cluster of base
stations. Therefore, it requires a higher level of coordination
and information exchange between the base stations and a
network controller. For example, as described in [1], this
approach can be implemented in a 5G NR network deployed
following the xRAN/Open RAN paradigms, where groups of
Next Generation Node Bases (gNBs) are associated with edge-
based network controllers that handle their control plane.
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Fig. 1: Example of time series from the traces collected for 4 eNBs in the
San Francisco dataset over 7 days.
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In the following paragraphs, we will present procedures and
results for the prediction of the number of active users in
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in order to provide innovative services to the users themselves,
and propose a novel cluster-based approach to improve the
prediction accuracy.
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and carrier frequency) and, then, the data for the cells in the
same base station (i.e., with the RF equipment in the same
physical location) is aggregated again.
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users. The raw data is further processed to define time series
of different quantities of interest in each eNB at different
time scales (from minutes to weeks), such as (i) the eNB
utilization, represented by the ratio of used and available
Physical Resource Blocks (PRBs); (ii) the number of incoming
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i.e., connected and involved in a data exchange. Other metrics
could also be extracted, for example related to the user latency,
link statistics (e.g., error probability), or different estimates
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and do not represent an accurate source for the estimation of
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Fig. 1: Example of time series from the traces collected for 4 eNBs in the
San Francisco dataset over 7 days.

IV. PREDICTING THE NUMBER OF USERS IN BASE
STATIONS

In the following paragraphs, we will present procedures and
results for the prediction of the number of active users in
the base stations of a cellular network. This information can
be exploited to predict other relevant KPIs, e.g., the network
load, or the user throughput. We will compare the accuracy
of the prediction according to two different methods. The
first uses only local information (i.e., available in each single
base station) to perform the training and the prediction. This
strategy can be used in networks where there is no or limited
coordination among base stations, which are complete and
self-contained pieces of equipment, as in 4G LTE networks.
The second strategy, instead, relies on the availability of shared
information from a set of neighboring base stations, given
that it aims at jointly predicting the number of users in each
one, based on the common history of the cluster of base
stations. Therefore, it requires a higher level of coordination
and information exchange between the base stations and a
network controller. For example, as described in [1], this
approach can be implemented in a 5G NR network deployed
following the xRAN/Open RAN paradigms, where groups of
Next Generation Node Bases (gNBs) are associated with edge-
based network controllers that handle their control plane.

Number of handovers

Number of UEs

PRB utilization



Data-driven operations: RAN clustering

• How can the network automatically match the CU and controllers?

• Goal: minimize the interaction among different controllers
• Avoid inter-controller sync-up

• Avoid the exchange of inter-controller messages

CU CU CU

RAN 
Controller

Minimize the control plane latency

CU CU CU CU

RAN 
Controller

17

Data-driven clustering 
and load prediction Scheduling selection 

with deep 
reinforcement learning



Clustering based on 
base station positions

(fixed, no dynamic data)
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Data-driven operations: RAN clustering
Goal: minimize inter-controller interactions

(impact on control plane latency)

Clustering based on 
handover transitions

(dynamic, based on network data)

Data-driven clustering 
and load prediction Scheduling selection 

with deep 
reinforcement learning



Data-driven operations: RAN clustering
Number of handovers
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(b) Number of intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, Nc = 10.
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Mountain View, Nc = 10.

Fig. 4: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different

deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,

and for a more dynamic solution based on more frequent updates (i.e., Tc = 15 minutes).

Moreover, Fig. 4c also plots the ratio between the intra- and inter-cluster handovers. Notice

that the number of handovers reported in Fig. 4a refers to the events happened on February

2nd, while the clustering is based on the data from the previous day. For the 15-minute update
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Fig. 5: Ratio R between intra- and inter-cluster handovers as a function of the number of clusters Nc, with clustering based on

daily updates.

case, the clustering is updated every 15 minutes to reflect the statistics from the previous 15

minutes. However, as Fig. 4a shows, updating the clusters with a daily periodicity, using data

from the previous day, does not results in significantly degraded performance with respect to

the 15-minute updates case. Notice also that a cluster update has some cost in terms of control

signaling between the gNBs and the controllers. Moreover, the daily-based update builds the

graph and the clustering according to a more robust statistics, i.e., based on the transitions for

the whole day. This is particularly evident if we consider the example in Figs. 4b and 4d, which

report the same metrics but for a whole day in the Mountain View/Palo Alto area and Nc = 10

clusters. As it can be seen, at night, when the number of handovers is low, the clustering with

update step Tc = 15 minutes exhibits a very high variation in the ratio between intra- and

inter-cluster handovers, and in some cases has a performance which is similar to that of the

geographic case, while the curve for the daily-based update shows a more stable behavior and

better performance.

Finally, in Fig. 5 we present the ratio R between intra- and inter-cluster handovers by con-

sidering Tc = 24 hours as fixed, and changing the number of clusters Nc. For each value of

Nc, we run multiple times the clustering algorithms, to average the behavior of K means and

provide confidence intervals. It can be seen that the gain of the network-data-based solution

over the position-based one is almost constant, especially as the number of clusters grows, with

an average increase of the ratio R of 45.38% for the San Francisco case and 42.62% for the

Mountain View/Palo Alto scenario. The behavior in the two scenarios with Nc = 2, however, is

different: while in the San Francisco case Nc = 2 yields the largest difference for the value of R

between the network-data- and the location-based clustering, in the Mountain View context Nc

corresponds to the minimum difference. This is probably due to the difference in the geography
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from the previous day, does not results in significantly degraded performance with respect to

the 15-minute updates case. Notice also that a cluster update has some cost in terms of control

signaling between the gNBs and the controllers. Moreover, the daily-based update builds the

graph and the clustering according to a more robust statistics, i.e., based on the transitions for

the whole day. This is particularly evident if we consider the example in Figs. 4b and 4d, which

report the same metrics but for a whole day in the Mountain View/Palo Alto area and Nc = 10

clusters. As it can be seen, at night, when the number of handovers is low, the clustering with

update step Tc = 15 minutes exhibits a very high variation in the ratio between intra- and

inter-cluster handovers, and in some cases has a performance which is similar to that of the
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provide confidence intervals. It can be seen that the gain of the network-data-based solution

over the position-based one is almost constant, especially as the number of clusters grows, with

an average increase of the ratio R of 45.38% for the San Francisco case and 42.62% for the

Mountain View/Palo Alto scenario. The behavior in the two scenarios with Nc = 2, however, is
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Fig. 4: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different

deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,

and for a more dynamic solution based on more frequent updates (i.e., Tc = 15 minutes).

Moreover, Fig. 4c also plots the ratio between the intra- and inter-cluster handovers. Notice

that the number of handovers reported in Fig. 4a refers to the events happened on February

2nd, while the clustering is based on the data from the previous day. For the 15-minute update
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deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,

and for a more dynamic solution based on more frequent updates (i.e., Tc = 15 minutes).

Moreover, Fig. 4c also plots the ratio between the intra- and inter-cluster handovers. Notice

that the number of handovers reported in Fig. 4a refers to the events happened on February

2nd, while the clustering is based on the data from the previous day. For the 15-minute update
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Data-driven operations: prediction

§ Local-based method: train a different model in each BS to predict the number of 
UEs in each single BS

§ This is what is possible in 4G LTE networks

§ Cluster-based method: train a model per cluster, predict a vector with the 
number of UEs in each BS of the cluster

§ Enabled by RAN controllers

§ Exploit spatial correlation to improve the prediction

Goal: predict the number of active UEs

20
Please check the paper for details on data processing, training, testing 
M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, M. Zorzi, “Machine Learning at the Edge: a Data-Driven Architecture with 
Applications to 5G Cellular Networks”, IEEE Transactions on Mobile Computing, June 2020
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Results on a 
sample cluster
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(b) A different window W is selected for each method and look-ahead step L to
minimize the RMSE �̂. The values of W are reported in Table 4.

Fig. 7: RMSE �̂ for different local- and cluster-based prediction methods, as a function of the look-ahead step L, and for different windows W .
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Fig. 8: Example of predicted vs true time series, for L = 3 (i.e., 15
minutes ahead), W = 3 and the cluster-based GPR on two base stations
for cluster 0.

is minimal for the best performing methods (i.e., below
5%), while it is more significant for the local-based RFR.
Moreover, the spatial dimension has more impact on the
quality of the prediction than the temporal one. Indeed,
while by changing W the RMSE for the GPR and BRR
improves by up to 5%, when introducing the multi-output
prediction with the GPR the RMSE decreases by up to
50%. Differently from prior works in which the single user
mobility is predicted [19], we are indeed considering the
number of users at a cell level, and, in this case, the possible
transitions between neighboring cells are limited by the
geography of the scenario, and by the available means of
transport. Therefore, there exists a spatial correlation be-
tween the number of users in the neighboring base stations
and the number of users in the considered base station at
some time in the future, given that the mobility flows are
constrained by the aforementioned factors.

Nonetheless, there exist still some limitations to the
accuracy of the prediction of the number of users. Fig. 8
reports an example of the predicted (for L = 3, i.e., 15
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(a) RMSE �̂ of the cluster-based GPR on cluster 0 when varying the amount of
data used for training, at different future time steps L.
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(b) Residual error Nu(t) � N̂u(t), where Nu(t) is the true value of the number
of users at time t, and N̂u(t) is the predicted one, as a function of the true value
of the number of users Nu(t � 1) at time t � 1. L = 2.

Fig. 9: Additional results on the prediction accuracy for cluster 0 with
the cluster-based GPR, W = 2.

minutes) and the true time series for two different base
stations, with a high and low number of users. As it can
be seen, the true time series have some daily patterns, but
are also quite noisy. As a consequence, the predicted time
series manage to track the daily pattern, but cannot predict
the exact value of the number of users. This is more evident
when the number of UEs is low, as in Fig. 8b, which also
exhibits smaller daily variations.

Finally, Fig. 9 reports additional results on the prediction
performance of the cluster-based GPR. In Fig. 9a, we com-
pare the RMSE �̂ obtained on the testing dataset when using
partial training datasets of different sizes, i.e., with 25, 50, 75
hours, or the complete training dataset (i.e., 100 hours). The
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Fig. 4: Example of predicted vs true time series, for L = 3 (i.e., 15 minutes
ahead), W = 3 and the cluster-based GPR on two base stations for cluster 0.

W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of
the scenario in which the base stations are deployed actually
limits the possible movements of users across neighboring
cells. These constraints on the mobility flow translate into a
spatial correlation among the number of users in neighboring
base stations at time t and at time t+ L.

However, there are still some limitations to the accuracy of
the prediction. Fig. 4 reports an example of the true and the
predicted (for L = 3, i.e., 15 minutes) time series for two
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Fig. 5: Average cluster-based GPR vs local-based BRR for all the San
Francisco base stations.

Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

different base stations, with a low and high number of users.
It can be seen that the true time series exhibit daily patterns,
but also a high level of noise. As a consequence, the predicted
values manage to track the main trend of the true time series,
but do not represent the exact value of the number of users in
all cases. This is more noticeable with a low number of UEs,
as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach
on the sample cluster, we selected the best performing local-
and cluster-based methods, i.e., respectively, the BRR and the
GPR, and performed the prediction on all the base stations of
the San Francisco area, once again clustered according to the
approach in [1]. The average RMSE over all the base stations
is reported in Fig. 5. The cluster-based method consistently
outperforms the local-based one. The reduction in the average
RMSE over all the clusters Eclusters[�̂] is 18.3% for L =

Average results 
on all clusters



Intelligent scheduling for RAN slicing
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Challenging environment: 
• Dynamic channel
• Dynamic resource allocations for each slice

eMBB sliceMTC slice URLLC slice

Exploit data-driven closed-loop control with the near real-time 
RIC to automatically tune the RAN parameters for each slice 

We focus on scheduling policy selection through Deep 
Reinforcement Learning (DRL)

More info: L. Bonati, S. D’Oro, M. Polese, S. Basagni,  and T. Melodia, "Intelligence and Learning in O-
RAN for Data-driven NextG Cellular Networks", arXiv:2012.01263 [cs.NI], December 2020
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O-RAN integration in Colosseum

Colosseum is the world most powerful hardware-in-the-loop network emulator

• 256 software-defined radios
• 25.6 GHz of emulated bandwidth, 52 TB/s RF data
• 21 racks of radios, 171 high-performance servers w/ CPUs, GPUs
• Massive computing capabilities (CPU, GPU, FPGA):
• > 900 TB of storage
• 320 FPGAs
• 18 10G switches 
• 19 clock distribution systems 
• 52 TB/s of digital RF data 

We can create and test complex 
5G scenarios

Data-driven clustering 
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with deep 
reinforcement learning
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O-RAN Integration in Colosseum
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Fully virtualized RAN on white-box hardware O-RAN open-source infrastructure
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O-RAN Integration in Colosseum
12 DRL agents running in parallel 

• Fully-connected neural network 
(5 layers & 30 neurons each)

• Online inference w/ real-time RAN 
performance data

• Trained offline on 6 GB of data & 63 
hours of experiments

• Decisions on scheduling policies of 
each BS slice

• Round-robin (RR)
• Waterfilling (WF)
• Proportional fair (PF)

O-RAN near real-time RIC

O-RAN 
E2 termination

O-RAN 
E2 manager

xAppRIC Database

Offline training engine

O-RAN non real-time RIC

D
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L m
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DRLBase station 
connector

Dense urban 
scenario, 4 BSs, 40 
UEs w/ pedestrian 
mobility
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Experimental results

eMBB slice

URLLC slice

• Improve spectral efficiency for eMBB users
• Satisfy URLLC users requests
• Reduce RLC buffer occupancy by 20%

Data-driven clustering 
and load prediction Scheduling selection 

with deep 
reinforcement learning
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Experimental results – policy selection

Probability that the DRL agent selects a certain policy

• Different behaviors for the 3 slices
• Different behaviors for different slice sizes

(=size of the slice)

Need data-driven, adaptable approach

Data-driven clustering 
and load prediction Scheduling selection 

with deep 
reinforcement learning
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Conclusions

Future cellular networks will be

truly enabling the vision of data- and AI-driven networks

Road ahead:

• Testbeds and platforms for intelligent RAN development

•Dataset availability

•More involvement toward open-source protocol stacks

Open Programmable Virtualized



Resources

•Open source 5G software website: https://open5g.info

• Colosseum website: https://colosseum.net

• PAWR platforms: https://advancedwireless.org

• Institute for the Wireless Internet of Things: 
https://www.northeastern.edu/wiot/
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https://open5g.info/
https://colosseum.net/
https://advancedwireless.org/
https://www.northeastern.edu/wiot/
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