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Outline

* Machine learning in networks: motivation
« Contribution

*The dataset

*5G data-driven architecture

* Applications
* Clustering in self-organizing networks

e Prediction of the number of users In base stations

e Conclusions
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Data-driven networks: potentials

Network complexity Is increasing

(1\

Heterogeneity

Complex
protocol stacks

More devices

» Classic optimization techniques may be infeasible
* Need for autonomous orchestration and configuration
* QOE can improve with context-awareness

Use network data to drive self-optimizing
ML algorithms

»




Data-driven networks: challenges

 Scalability of ML techniques
 Availability of data
« Several open questions to be addressed ®

Which information Is needed from the network?

How Is It possible to efficiently collect this information?

How to practically deploy ML/AI algorithms?

Which ML techniques perform better?

How good Is the performance of ML in real networks?
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Data-driven networks: our contribution

* Mobile-edge controller-based architecture
1. Deployable in 5G NR networks

2. Capable of handling data collection and providing
real-time analytics and decisions

3. Better performing than legacy architectures
« Evaluation:

a. Data-driven dynamic clustering of base stations

b. Prediction accuracy of the number of UEs per base
station

Dataset with hundreds of base stations from major US operator

M. Polese, R. Jana, V. Kouney, K. Zhang, S. Deb, M. Zorzi, “Machine Learning at the Edge: a
Data-Driven Architecture with Applications to 5G Cellular Networks”, submitted to IEEE
JSAC Special Issue on Al and ML for networks
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State of the art

* [1] and [2] discuss how big data analytics can be used in
networks

e [3] and [4] use network traces to infer human mobility
patterns

* [5] models single-user mobility, while we focus on base-
station-level behavior

[1] Y. He, F. R. Yu, N. Zhao, H. Yin, H. Yao, and R. C. Qiu, “Big data analytics in mobile cellular networks,”
IEEE Access, vol. 4, pp. 1985- 1996, March 2016.

[2] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to empower SON with big data for
enabling 5G,” IEEE Network, vol. 28, no. 6, pp. 27-33, Nov 2014.

[3] R. Becker, R. Caceres, K. Hanson, S. Isaacman, J. M. Loh, M. Martonosi, J. Rowland, S. Urbanek, A.
Varshavsky, and C. Volinsky, “Human mobility characterization from cellular network data,”
Communications of the ACM, vol. 56, no. 1, pp. 74-82, Jan 2013.

[4] R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Urbanek, A. Varshavsky, and C. Volinsky, “A tale of one
city: Using cellular network data for urban planning,” IEEE Pervasive Computing, vol. 10, no. 4, pp. 18-26,
April 2011.

[5] W. Dong, N. Duffield, Z. Ge, S. Lee, and J. Pang, “Modeling cellular user mobility using a leap graph,” in
International Conference on Passive and Active Network Measurement. Springer, 2013, pp. 53-62.
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The dataset

472 eNBs In San Francisco
* February 2017

« Every day, 3 P.M.to 8 P.M.
178 eNBs I1n Palo Alto

* June-july 2018

« Whole day

4G LTE deployment

Data collected:
e Resource utilization

 Number of incoming and
outgoing handovers

e Number of active UEs

eNB 1 eNB 2 eNB 3

Utilization

15:00 16:00 17:00 18:00 19:00

Time

(a) Utilization (averaged over a 15-minute interval).
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(b) Number of active UEs (summed over a 15-minute interval).
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(c) Number of incoming handovers (summed over a 15-minute interval).
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Data-driven 5G architecture

4G systems
no/limited coordination

eNBs are self-contained equipment

Proposal

5G systems

« coordination control through xRAN/O-RAN
« CU/DU split

« Learning based on local
information/history
« Single-eNB applications

!

* Learning based on shared
information/history
« Coordinated learning

¥

Exploit the spatial correlation naturally introduced by user mobility

8



Multi-layer architecture
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Multi-layer architecture: key components

* 3GPP NR CUs/DUs for data plane & local control decisions
» Mobile Edge Computing facilities

* RAN controllers (xRAN, Open RAN)
* Deployed at the edge
e Orchestrate CUs/Dus

e Clustered view on the network

e Collect data from CUs/DUs to control the network —> use it also to
run ML algorithms

« Network controller (ONAP)

« Centralized cloud facility

* RAN controllers orchestration and app-layer services
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Data-driven operations: RAN clustering

Goal: minimize inter-controller interactions
(impact on control plane latency)

Clustering based on Clustering based on
base station positions handover transitions
(fixed, no dynamic data) (dynamic, based on network data)



Data-driven operations: RAN clustering

Goal: minimize inter-controller interactions
(impact on control plane latency)

Algorithm 1 Network-data-driven Controller Association Algorithm

1: for every time step 7.

2: distributed data collection step:

3 for every controller p € {0, ..., N. — 1} with associated gNBs set B,
4 for every gNB i € B3,
5 compute the number of handovers N;'9Vj € B
6: end for
7 report the statistics on the number of handovers to the network controller
8 end for
9 clustering and association step:
10: compute the transition probability matrix [ based on the handovers between every pair of gNBs
11: define weighted graph G = (V, E) with weight W(G); ; = H;; + H;;
9 12: perform spectral clustering with constrained K means on G to identify N. clusters
8 13: apply the new association policy for the next time step
@) 14: end for
=
=



Data-driven operations: RAN clustering

105 Number of handovers
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Data-driven operations: prediction

Predict the number of active UEs

= | ocal-based method: train a different model in each BS
to predict the number of UEs in each single BS

= This Is what Is possible in 4G LTE networks

= Cluster-based method: train a model per cluster, predict

a vector with the number of UEs In each BS of the cluster

= Enabled by our architecture

= Exploit spatial correlation to improve the prediction

14
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Data preprocessing

 The number of active users Is averaged every 5 minutes
» Scaling and log(1+x) applied to the dataset

Local-based prediction

« Target: number of active users in each eNB, with a look-
ahead step L € {1,2 ...,9} 5-minutes steps
* Features:
« Boolean flag - weekend or weekday
* Hour of the day
« Past W samples of the number of active users

15
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Data preprocessing

 The number of active users Is averaged every 5 minutes
» Scaling and log(1+x) applied to the dataset

Cluster-based prediction

« Target: vector with the number of active users in each
eNB of the cluster, with a look-ahead step L € {1,2 ..., 9}
5-minutes steps

* Features:

« Boolean flag — weekend or weekday
* Hour of the day

« Vector with past W samples of the number of active
users in each eNB of the cluster

16
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Data preprocessing
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« Sample cluster in San Francisco
* 22 base stations

More details on the clustering process can be found in M. Polese, R. Jana, V. Kouney, K. Zhang, S. Deb,
and M. Zorzi, “Machine learning at the edge: A data-driven architecture with applications to 5G
cellular networks,” submitted to IEEE Journal on Selected Areas of Communications, 2018. [Online]. 17
Available: https://arxiv.org/abs/1808.07647



Hyperparameters
A | gO r It h I I I S Bayesian Ridge Regressor [18], [19]
o {10=6,1073,1, 10,100}
A {10-6,10-3,1, 10, 100}

Random Forest Regressor [20], [21]
Number of trees N, {1000, 5000, 10000}

« Bayesian Ridge Regressor

(B R R) Gaussian Process Regressor [22]
—6 —4 —2
« Local-based only « %(1)9001, %)901},10 ,0.1}

» Random Forest Regressor (RFR)
e |ocal- and cluster-based

» Gaussian Process Regressor (GPR)
* Local- and cluster-based

« Combined kernel with
Dot product kernel (non stationary behavior)
 Rational quadratic kernel (mixture of stationary behaviors)

« White kernel (noisy input)
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18

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.



http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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Training and testing

3-fold cross validation to select hyperparameters (with
time-consistent split)

RMSE considered for the prediction error:

Nte
Z(yl(o - 9102

0o; =

\

Nte

The RMSE Is averaged over the base stations of each
cluster

Training dataset from 01/31to 02/20
Testing dataset from 02/21to 02/26

19
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Performance evaluation

RMSE &
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Performance evaluation

» Spatial correlation (cluster- vs local-based) is more
Impactfuf than temporal correlation

53% RMSE reduction

5% RMSE reduction when increasing W

 Exploit geographic constraints on mobility flows
« When considering all the 472 eNBs (in 22 clusters):

RMSE &
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—, Example of predicted timeseries

(@)
—
(-
@\
)
=
)

e Cluster-based GPR

* High number of users
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Good tracking of daily patterns
Very noisy traces
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Use cases for the prediction

« Medium-timescale horizon (5 — 45 minutes)
» Network management and operations:

 Predictive load-balancing

» Bearer pre-configuration for anticipatory mobility

* Radio resource scaling

e New services to the end-users

 Vehicular route optimization with network KPIs
(provide transit directions tailored on the network performance)

23
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Vehicular route optimization with network KPIs

Predicted throughput

Sl (a? a function of number of active users)
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Conclusions

* Proposed a data-driven architecture for 5G networks

 Evaluation of learning approaches on a large-scale dataset
from a network operator

* RAN clustering

e Prediction

* Exploiting spatial correlation is beneficial for medium-term
prediction

« Reduction of the prediction error up to 53%

* Enabler of new use cases - both for RAN control and innovative
user services

More details can be found in M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi, “Machine
learning at the edge: A data-driven architecture with applications to 5G cellular networks,”
submitted to IEEE Journal on Selected Areas of Communications, 2018. [Online]. Available: 75
https://arxiv.org/abs/1808.07647
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