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• Classic optimization techniques may be infeasible
• Need for autonomous orchestration and configuration
• QoE can improve with context-awareness

Data-driven networks: potentials
Network complexity is increasing

More devices
Heterogeneity

Complex 
protocol stacks

Use network data to drive self-optimizing 
ML algorithms
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• Scalability of ML techniques
• Availability of data
• Several open questions to be addressed
• Which information is needed from the network?
• How is it possible to efficiently collect this information?
• How to practically deploy ML/AI algorithms?
• Which ML techniques perform better?
• How good is the performance of ML in real networks?

Data-driven networks: challenges
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• Mobile-edge controller-based architecture 
1. Deployable in 5G NR networks
2. Capable of handling data collection and providing 

real-time analytics and decisions
3. Better performing than legacy architectures

• Evaluation: 
a. Data-driven dynamic clustering of base stations
b. Prediction accuracy of the number of UEs per base 

station

Data-driven networks: our contribution

Dataset with hundreds of base stations from major US operator

M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, M. Zorzi, “Machine Learning at the Edge: a 
Data-Driven Architecture with Applications to 5G Cellular Networks”, submitted to IEEE 
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• [1] and [2] discuss how big data analytics can be used in 
networks
• [3] and [4] use network traces to infer human mobility 

patterns
• [5] models single-user mobility, while we focus on base-

station-level behavior

State of the art
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• 472 eNBs in San Francisco
• February 2017
• Every day, 3 P.M. to 8 P.M.

• 178 eNBs in Palo Alto
• June-July 2018
• Whole day

• 4G LTE deployment
• Data collected:
• Resource utilization
• Number of incoming and 

outgoing handovers
• Number of active UEs

The dataset
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patterns, with the goal to infer large-scale patterns and under-
stand city dynamics. Reference [16] proposes to use a leap
graph to model the mobility pattern of single users. With
respect to the state of the art, in this paper we focus on the
prediction of the number of users associated to a base station,
in order to provide innovative services to the users themselves,
and propose a novel cluster-based approach to improve the
prediction accuracy.

III. THE DATASET

This section describes the dataset that will be used to
train and test the machine learning algorithms discussed in
this paper. The network traces we utilize are based on the
monitoring logs of 472 base stations of a national U.S.
operator in the San Francisco area, for more than 600000 User
Equipments (UEs) per day, properly anonymized during the
collection phase. The base stations in the dataset belongs to a
4G LTE-A deployment, which at the time of writing represents
the most advanced cellular technology commercially deployed
at a large scale. We argue that, even if 5G NR networks will
have more advanced characteristics than Long Term Evolution
(LTE), this dataset can represent a first NR deployment at
sub-6 GHz frequencies in a dense urban scenario. The mea-
surement campaign was run in February 2017 (01/31/2017 �
02/26/2017), with monitoring logs collected every day from
3 P.M. to 8 P.M.. Fig. 1 shows an example of time series
for different metrics from 4 LTE evolved Node Bases (eNBs),
with a time step of 5 minutes.

Given the sensitive nature of this data, we applied stan-
dard policies to make sure that individuals’ privacy was not
undermined with the data collection and processing. In this
regard, the International Mobile Subscriber Identity (IMSI)
(i.e., the identifier associated to a single user in the traces)
of each UE was anonymized through hashing. Additionally,
the analysis in this paper only uses aggregate metrics, which
do not single out the behavior of any particular user. First,
user data is grouped for each cell (i.e., mapped to a sector
and carrier frequency) and, then, the data for the cells in the
same base station (i.e., with the RF equipment in the same
physical location) is aggregated again.

The traces used in this paper register a number of standard-
ized events in LTE eNBs, mostly involving the mobility of
users. The raw data is further processed to define time series
of different quantities of interest in each eNB at different
time scales (from minutes to weeks), such as (i) the eNB
utilization, represented by the ratio of used and available
Physical Resource Blocks (PRBs); (ii) the number of incoming
and outgoing handovers; and (iii) the number of active UEs,
i.e., connected and involved in a data exchange. Other metrics
could also be extracted, for example related to the user latency,
link statistics (e.g., error probability), or different estimates
of the user and cell throughput, but the logs reporting these
quantities are less frequent and regular than those we consider,
and do not represent an accurate source for the estimation of
the network performance.
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(b) Number of active UEs (summed over a 15-minute interval).
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(c) Number of incoming handovers (summed over a 15-minute interval).

Fig. 1: Example of time series from the traces collected for 4 eNBs in the
San Francisco dataset over 7 days.

IV. PREDICTING THE NUMBER OF USERS IN BASE
STATIONS

In the following paragraphs, we will present procedures and
results for the prediction of the number of active users in
the base stations of a cellular network. This information can
be exploited to predict other relevant KPIs, e.g., the network
load, or the user throughput. We will compare the accuracy
of the prediction according to two different methods. The
first uses only local information (i.e., available in each single
base station) to perform the training and the prediction. This
strategy can be used in networks where there is no or limited
coordination among base stations, which are complete and
self-contained pieces of equipment, as in 4G LTE networks.
The second strategy, instead, relies on the availability of shared

information from a set of neighboring base stations, given
that it aims at jointly predicting the number of users in each
one, based on the common history of the cluster of base
stations. Therefore, it requires a higher level of coordination
and information exchange between the base stations and a
network controller. For example, as described in [1], this
approach can be implemented in a 5G NR network deployed
following the xRAN/Open RAN paradigms, where groups of
Next Generation Node Bases (gNBs) are associated with edge-
based network controllers that handle their control plane.
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Data-driven 5G architecture
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4G systems
• no/limited coordination
• eNBs are self-contained equipment

5G systems
• coordination control through xRAN/O-RAN
• CU/DU split

• Learning based on local 
information/history

• Single-eNB applications

• Learning based on shared 
information/history

• Coordinated learning

Exploit the spatial correlation naturally introduced by user mobility 

Proposal
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Multi-layer architecture

• Data collection
• Policy enforcement
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Network 
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• Data forwarding
• Fast control loop
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Cloud
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Multi-layer architecture: key components

• 3GPP NR CUs/DUs for data plane & local control decisions
•Mobile Edge Computing facilities
• RAN controllers (xRAN, Open RAN)
• Deployed at the edge
• Orchestrate CUs/Dus
• Clustered view on the network
• Collect data from CUs/DUs to control the network –> use it also to 

run ML algorithms

• Network controller (ONAP)
• Centralized cloud facility
• RAN controllers orchestration and app-layer services
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Clustering based on 
base station positions

(fixed, no dynamic data)

Data-driven operations: RAN clustering
Goal: minimize inter-controller interactions

(impact on control plane latency)

Clustering based on 
handover transitions

(dynamic, based on network data)
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Data-driven operations: RAN clustering
Goal: minimize inter-controller interactions

(impact on control plane latency)
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Data-driven operations: RAN clustering
Number of handovers
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(b) Number of intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, N
c

= 10.
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(d) Ratio between intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, N
c

= 10.

Fig. 4: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different

deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,

and for a more dynamic solution based on more frequent updates (i.e., T
c

= 15 minutes).

Moreover, Fig. 4c also plots the ratio between the intra- and inter-cluster handovers. Notice

that the number of handovers reported in Fig. 4a refers to the events happened on February

2nd, while the clustering is based on the data from the previous day. For the 15-minute update
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(b) Mountain View/Palo Alto scenario, 2018/06/28.

Fig. 5: Ratio R between intra- and inter-cluster handovers as a function of the number of clusters N
c

, with clustering based on

daily updates.

case, the clustering is updated every 15 minutes to reflect the statistics from the previous 15

minutes. However, as Fig. 4a shows, updating the clusters with a daily periodicity, using data

from the previous day, does not results in significantly degraded performance with respect to

the 15-minute updates case. Notice also that a cluster update has some cost in terms of control

signaling between the gNBs and the controllers. Moreover, the daily-based update builds the

graph and the clustering according to a more robust statistics, i.e., based on the transitions for

the whole day. This is particularly evident if we consider the example in Figs. 4b and 4d, which

report the same metrics but for a whole day in the Mountain View/Palo Alto area and N
c

= 10

clusters. As it can be seen, at night, when the number of handovers is low, the clustering with

update step T
c

= 15 minutes exhibits a very high variation in the ratio between intra- and

inter-cluster handovers, and in some cases has a performance which is similar to that of the

geographic case, while the curve for the daily-based update shows a more stable behavior and

better performance.

Finally, in Fig. 5 we present the ratio R between intra- and inter-cluster handovers by con-

sidering T
c

= 24 hours as fixed, and changing the number of clusters N
c

. For each value of

N
c

, we run multiple times the clustering algorithms, to average the behavior of K means and

provide confidence intervals. It can be seen that the gain of the network-data-based solution

over the position-based one is almost constant, especially as the number of clusters grows, with

an average increase of the ratio R of 45.38% for the San Francisco case and 42.62% for the

Mountain View/Palo Alto scenario. The behavior in the two scenarios with N
c

= 2, however, is

different: while in the San Francisco case N
c

= 2 yields the largest difference for the value of R

between the network-data- and the location-based clustering, in the Mountain View context N
c

corresponds to the minimum difference. This is probably due to the difference in the geography

16

0 10 20 30 40 50

0

10

20

Number of clusters N

c

R
at

io
R

Data-driven clustering Position-based clustering

(a) San Francisco scenario, 2017/02/02.

0 10 20 30 40 50

0

5

10

15

20

Number of clusters N

c

R
at

io
R

(b) Mountain View/Palo Alto scenario, 2018/06/28.

Fig. 5: Ratio R between intra- and inter-cluster handovers as a function of the number of clusters N
c

, with clustering based on

daily updates.

case, the clustering is updated every 15 minutes to reflect the statistics from the previous 15

minutes. However, as Fig. 4a shows, updating the clusters with a daily periodicity, using data

from the previous day, does not results in significantly degraded performance with respect to

the 15-minute updates case. Notice also that a cluster update has some cost in terms of control

signaling between the gNBs and the controllers. Moreover, the daily-based update builds the

graph and the clustering according to a more robust statistics, i.e., based on the transitions for

the whole day. This is particularly evident if we consider the example in Figs. 4b and 4d, which

report the same metrics but for a whole day in the Mountain View/Palo Alto area and N
c

= 10

clusters. As it can be seen, at night, when the number of handovers is low, the clustering with

update step T
c

= 15 minutes exhibits a very high variation in the ratio between intra- and

inter-cluster handovers, and in some cases has a performance which is similar to that of the

geographic case, while the curve for the daily-based update shows a more stable behavior and

better performance.

Finally, in Fig. 5 we present the ratio R between intra- and inter-cluster handovers by con-

sidering T
c

= 24 hours as fixed, and changing the number of clusters N
c

. For each value of

N
c

, we run multiple times the clustering algorithms, to average the behavior of K means and

provide confidence intervals. It can be seen that the gain of the network-data-based solution

over the position-based one is almost constant, especially as the number of clusters grows, with

an average increase of the ratio R of 45.38% for the San Francisco case and 42.62% for the

Mountain View/Palo Alto scenario. The behavior in the two scenarios with N
c

= 2, however, is

different: while in the San Francisco case N
c

= 2 yields the largest difference for the value of R

between the network-data- and the location-based clustering, in the Mountain View context N
c

corresponds to the minimum difference. This is probably due to the difference in the geography

15

16:00 17:00 18:00 19:00

1

2

3

4

·105

Time

N
um

be
r

of
ha

nd
ov

er
s

Intra cluster HO - 15 min updates Inter cluster HO - 15 min updates
Intra cluster HO - daily updates Inter cluster HO - daily updates
Intra cluster HO - static (geo clustering) Inter cluster HO - static (geo clustering)

(a) Number of intra- and inter-cluster handovers for 2017/02/02 in San

Francisco, N
c

= 22.

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00
0

1

2

·105

Time

N
um

be
r

of
ha

nd
ov

er
s

(b) Number of intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, N
c

= 10.

16:00 17:00 18:00 19:00

3

3.5

4

4.5

Time

R
at

io
R

15 min updates daily updates static (geo clustering)

(c) Ratio between intra- and inter-cluster handovers for 2017/02/02 in

San Francisco, N
c

= 22.

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00
5

10

15

20

Time

R
at

io
R

(d) Ratio between intra- and inter-cluster handovers for 2018/06/28 in

Mountain View, N
c

= 10.

Fig. 4: Number of intra- and inter-cluster handovers (and relative ratio R) with different clustering strategies, in different

deployments (i.e., San Francisco, with 472 base stations, and Mountain View/Palo Alto, with 178).

in Sec. IV-A, intra-controller handovers can be managed locally, by the controller which is

in common to the source and target base stations. Inter-controller handoffs, instead, require

the coordination and synchronization of the two controllers, thus increasing the control plane

latency to at least twice that of handovers related to a single controller. The actual overhead on

the latency introduced by inter-controller communications will depend on signaling specifications

that have not been developed yet, as mentioned in Sec. IV-A, but the need to avoid inter-controller

synchronization is valid in any case. Therefore, we report as metrics the number of intra- and

inter-controller handovers and their ratio.

In Fig. 4a, we report the number of handovers for the two configurations shown in Fig. 3,
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Data-driven operations: prediction
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§ Local-based method: train a different model in each BS 
to predict the number of UEs in each single BS

§ This is what is possible in 4G LTE networks

§ Cluster-based method: train a model per cluster, predict 
a vector with the number of UEs in each BS of the cluster

§ Enabled by our architecture

§ Exploit spatial correlation to improve the prediction

Predict the number of active UEs



Data preprocessing

• The number of active users is averaged every 5 minutes
• Scaling and log(1+x) applied to the dataset

• Target: number of active users in each eNB, with a look-
ahead step ! ∈ {1, 2… , 9} 5-minutes steps

• Features:
• Boolean flag – weekend or weekday
• Hour of the day
• Past * samples of the number of active users
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Local-based prediction
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Data preprocessing

• The number of active users is averaged every 5 minutes
• Scaling and log(1+x) applied to the dataset

• Target: vector with the number of active users in each  
eNB of the cluster, with a look-ahead step ! ∈ {1, 2… , 9}
5-minutes steps

• Features:
• Boolean flag – weekend or weekday
• Hour of the day
• Vector with past * samples of the number of active 

users in each  eNB of the cluster
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Cluster-based prediction
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Data preprocessing

• Sample cluster in San Francisco
• 22 base stations
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More details on the clustering process can be found in M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, 
and M. Zorzi, “Machine learning at the edge: A data-driven architecture with applications to 5G 
cellular networks,” submitted to IEEE Journal on Selected Areas of Communications, 2018. [Online]. 
Available: https://arxiv.org/abs/1808.07647 17



Algorithms

• Bayesian Ridge Regressor 
(BRR)
• Local-based only

• Random Forest Regressor (RFR)
• Local- and cluster-based

• Gaussian Process Regressor (GPR)
• Local- and cluster-based
• Combined kernel with

• Dot product kernel (non stationary behavior)
• Rational quadratic kernel (mixture of stationary behaviors)
• White kernel (noisy input)
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Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Considering the San Francisco dataset described in Sec. III,
we will first focus on prediction results for a specific set of 22
base stations, clustered with the procedure described in [1],
and then extend the analysis to all the 472 available nodes,
showing how a cluster-based approach reduces the prediction
error with respect to a local-based approach.

A. Data Preprocessing

The number of users in the base stations of the San
Francisco dataset has been sampled with a time step of T

s

= 5

minutes. The time series were then split into a training set
(used for k-fold cross validation) and a test set. In particular,
the training set ranges from January 31st to February 20th,
and the test set is in the interval between February 21st and
February 26th.

Consider B as the set of all the base stations in San
Francisco. The goal is to obtain a multi-step ahead prediction
of the number of users N

i

u

(t + L) at times t + 1, . . . , t + L,
where i 2 B is the identifier of the base station, and L � 1

is the look-ahead step of the forecast. The prediction is based
on the data collected before time t, which is characterized by
three different features. The first two are a boolean b(t) that
specifies if the considered day is a weekday, and an integer
h(t) 2 {0, . . . , 4} that indicates the hour of the day (from
3 P.M. to 8 P.M.). The third feature is given by the past W
samples of the number of users, with W the window of the
history used for the forecast, i.e., N i

u

(t+ ⌧), ⌧ 2 [�W +1, 0].
We also analyzed other possible features, such as the number
of handovers and the cell utilization, but they exhibited a
small correlation with the prediction target. Given the daily
discontinuities of the dataset, we discard the first W samples
of each day, therefore the size of the training (N

tr

) and test
(N

te

) sets depends on the value of W .
For the local-based prediction, in which each base station

learns the future number of users using only its own data,
the training and test set are represented by the feature matrix
X 2 RNk,3W

, k 2 {tr, te}, with a vector

[N

i

u

(t�W + 1), h(t�W + 1), b(t�W + 1) . . . ,

N

i

u

(t), h(t), b(t)] (1)

in each row, and by the target vector y 2 RNk,1
, k 2 {tr, te}.

With the cluster-based method, instead, the target of the
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(t), h(t), b(t)]. (3)

Bayesian Ridge Regressor [18], [19]
↵ {10�6, 10�3, 1, 10, 100}
� {10�6, 10�3, 1, 10, 100}

Random Forest Regressor [20], [21]
Number of trees N

rf

{1000, 5000, 10000}

Gaussian Process Regressor [22]
↵ {10�6, 10�4, 10�2, 0.1}
�
k

{0.001, 0.01}

TABLE I: Values of the hyperparameters of the different regressors for the
k-fold cross-validation.

The values of the numbers of users in the training and test
sets are transformed with the function log(1 + x) and scaled
between 0 and 1. The scaling is fitted on the training set, and
then applied also to the test set. The metric we consider for the
performance evaluation of the different methods and prediction
algorithms is the Root Mean Squared Error (RMSE), defined
for a single base station i as
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NteX
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i

(t)� ŷ

i

(t))

2
, (4)

with y

i

the time series of the actual values for the number of
users for base station i, and ŷ

i

the predicted one.

B. Algorithm Comparison

We consider and compare various machine learning algo-
rithms for prediction: the BRR for the local-based prediction,
and the RFR and the GPR for both the local- and the cluster-
based forecasts.1 We used the implementations from the well-
know open-source library scikit-learn [17]. For each algorithm,
we compared different values of the past history window
W 2 {1, . . . , 10} and computed the prediction at values of the
future step L 2 {1, . . . , 9}, i.e., over a maximum time span of
45 minutes. We performed 3-fold cross-validation to select the
best hyperparameters for each regressor and values of L and
W . The range of the hyperparameters we tested is summarized
in Table I. Each fold is split using the TimeSeriesSplit
class of scikit-learn, i.e., without shuffling the training set, and
with indices monotonically increasing in each split, to keep the
consecutive temporal samples ordered in time.

The BRR, which was used for traffic prediction in an
urban scenario in [19], integrates a Bayesian probabilistic
approach and the ridge L2 regularization [18]. The Bayesian
approach automatically fits the available data, and only needs
the selection of the ↵ and � parameters of the Gamma priors.
However, it does not account for multi-output prediction, thus
it can be applied only to the local-based scenario.

The RFR, which for example was used in [21] for popula-
tion forecast, is a classic ensemble algorithm that (i) trains N

rf

regression trees from samples bootstrapped from the training
set and (ii) averages their output for the prediction [20]. Only

1We also considered a strategy based on neural networks (i.e., Long Short
Term Memory (LSTM)), however, given the reduced size of the training set,
it underperformed with respect to the other regression methods.
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• 3-fold cross validation to select hyperparameters (with 
time-consistent split)

• RMSE considered for the prediction error:

• The RMSE is averaged over the base stations of each 
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Fig. 2: Deployment of a sample cluster of San Francisco base stations involved
in the joint prediction described in Sec. IV-C, obtained using the method
described in [1].

two hyperparameters need to be tuned, i.e., the number of trees
N

rf

and the number of random features to sample. For N
rf

, a
higher value yields improved generalization capabilities, at the
cost of a longer training time. We set the number of random
features to sample when splitting the nodes to build additional
tree branches equal to the number of features for regression
problems, i.e., the number of columns in the training/testing
matrix X. RFRs support the prediction of both scalars and
vectors, therefore they can be applied in the local- and the
cluster-based scenarios.

The third algorithm is GPR, i.e., a regressor that fits a
Gaussian Process over the input data [22]. It uses a prior with
zero mean, and the covariance matrix determined by a kernel.
For this problem, we chose a kernel with the following form:
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It is given by the sum of a dot product kernel, that can fit non-
stationary behaviors, a rational quadratic kernel with l = 1,
and a white kernel, that models the noisy part of the input.
We used the GPR for both single-output and multi-output
predictions.

C. Performance analysis

Before applying the aforementioned regressors to the whole
available dataset, we consider a sample cluster of N

0
d

= 22

base station (obtained with the clustering process described
in [1]), whose relative positions are shown in Fig. 2.

Fig. 3 shows the average RMSE �̂ = E
i2C0 [�i

] of the
base stations in the set C0 associated to the sample cluster,
for different methods using either the local information only,
or the cluster-based approach, and a fixed value of the past
window W = 1. Among the local-based algorithms, the BRR
shows the best performance for all the values of the look-
ahead step L, with a reduction of the RMSE of up to 18% and
55% with respect to the GPR and RFR for L = 9. The GPR,
instead, yields better results than the RFR for the cluster-based
techniques, with an improvement up to 50% (for L = 1). As
expected, by increasing the look-ahead step L the prediction
accuracy decreases. However, when comparing the cluster- and
the local-based methods, the former perform better, especially
as the look-ahead step increases: the RMSE for the cluster-
based GPR saturates around �̂ = 14.8, while that for both
the BRR and the local-based GPR keeps increasing. For small
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(b) A different window W is selected for each method and look-ahead step L to minimize
the RMSE �̂. The values of W are reported in Table II.

Fig. 3: RMSE �̂ for different local- and cluster-based prediction methods, as
a function of the look-ahead step L, and for different windows W .

Look-ahead step L 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2
cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE II: Values of W for the plot in Fig. 3b for the BRR and the cluster-
based GPR

values of L, instead, the accuracy of local- and cluster-based
methods is similar.

Fig. 3b instead reports the RMSE varying the value of W ,
which is selected in order to minimize the RMSE �̂ for each
prediction method and value of L. Table II reports the values
W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of

Fig. 2: Deployment of a sample cluster of San Francisco base stations involved
in the joint prediction described in Sec. IV-C, obtained using the method
described in [1].

two hyperparameters need to be tuned, i.e., the number of trees
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and the number of random features to sample. For N
rf

, a
higher value yields improved generalization capabilities, at the
cost of a longer training time. We set the number of random
features to sample when splitting the nodes to build additional
tree branches equal to the number of features for regression
problems, i.e., the number of columns in the training/testing
matrix X. RFRs support the prediction of both scalars and
vectors, therefore they can be applied in the local- and the
cluster-based scenarios.

The third algorithm is GPR, i.e., a regressor that fits a
Gaussian Process over the input data [22]. It uses a prior with
zero mean, and the covariance matrix determined by a kernel.
For this problem, we chose a kernel with the following form:
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It is given by the sum of a dot product kernel, that can fit non-
stationary behaviors, a rational quadratic kernel with l = 1,
and a white kernel, that models the noisy part of the input.
We used the GPR for both single-output and multi-output
predictions.

C. Performance analysis

Before applying the aforementioned regressors to the whole
available dataset, we consider a sample cluster of N

0
d

= 22

base station (obtained with the clustering process described
in [1]), whose relative positions are shown in Fig. 2.

Fig. 3 shows the average RMSE �̂ = E
i2C0 [�i

] of the
base stations in the set C0 associated to the sample cluster,
for different methods using either the local information only,
or the cluster-based approach, and a fixed value of the past
window W = 1. Among the local-based algorithms, the BRR
shows the best performance for all the values of the look-
ahead step L, with a reduction of the RMSE of up to 18% and
55% with respect to the GPR and RFR for L = 9. The GPR,
instead, yields better results than the RFR for the cluster-based
techniques, with an improvement up to 50% (for L = 1). As
expected, by increasing the look-ahead step L the prediction
accuracy decreases. However, when comparing the cluster- and
the local-based methods, the former perform better, especially
as the look-ahead step increases: the RMSE for the cluster-
based GPR saturates around �̂ = 14.8, while that for both
the BRR and the local-based GPR keeps increasing. For small
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TABLE II: Values of W for the plot in Fig. 3b for the BRR and the cluster-
based GPR

values of L, instead, the accuracy of local- and cluster-based
methods is similar.

Fig. 3b instead reports the RMSE varying the value of W ,
which is selected in order to minimize the RMSE �̂ for each
prediction method and value of L. Table II reports the values
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two hyperparameters need to be tuned, i.e., the number of trees
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and the number of random features to sample. For N
rf

, a
higher value yields improved generalization capabilities, at the
cost of a longer training time. We set the number of random
features to sample when splitting the nodes to build additional
tree branches equal to the number of features for regression
problems, i.e., the number of columns in the training/testing
matrix X. RFRs support the prediction of both scalars and
vectors, therefore they can be applied in the local- and the
cluster-based scenarios.

The third algorithm is GPR, i.e., a regressor that fits a
Gaussian Process over the input data [22]. It uses a prior with
zero mean, and the covariance matrix determined by a kernel.
For this problem, we chose a kernel with the following form:
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It is given by the sum of a dot product kernel, that can fit non-
stationary behaviors, a rational quadratic kernel with l = 1,
and a white kernel, that models the noisy part of the input.
We used the GPR for both single-output and multi-output
predictions.

C. Performance analysis

Before applying the aforementioned regressors to the whole
available dataset, we consider a sample cluster of N
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base station (obtained with the clustering process described
in [1]), whose relative positions are shown in Fig. 2.

Fig. 3 shows the average RMSE �̂ = E
i2C0 [�i

] of the
base stations in the set C0 associated to the sample cluster,
for different methods using either the local information only,
or the cluster-based approach, and a fixed value of the past
window W = 1. Among the local-based algorithms, the BRR
shows the best performance for all the values of the look-
ahead step L, with a reduction of the RMSE of up to 18% and
55% with respect to the GPR and RFR for L = 9. The GPR,
instead, yields better results than the RFR for the cluster-based
techniques, with an improvement up to 50% (for L = 1). As
expected, by increasing the look-ahead step L the prediction
accuracy decreases. However, when comparing the cluster- and
the local-based methods, the former perform better, especially
as the look-ahead step increases: the RMSE for the cluster-
based GPR saturates around �̂ = 14.8, while that for both
the BRR and the local-based GPR keeps increasing. For small
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Fig. 3: RMSE �̂ for different local- and cluster-based prediction methods, as
a function of the look-ahead step L, and for different windows W .

Look-ahead step L 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2
cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE II: Values of W for the plot in Fig. 3b for the BRR and the cluster-
based GPR

values of L, instead, the accuracy of local- and cluster-based
methods is similar.

Fig. 3b instead reports the RMSE varying the value of W ,
which is selected in order to minimize the RMSE �̂ for each
prediction method and value of L. Table II reports the values
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in the joint prediction described in Sec. IV-C, obtained using the method
described in [1].

two hyperparameters need to be tuned, i.e., the number of trees
N
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and the number of random features to sample. For N
rf

, a
higher value yields improved generalization capabilities, at the
cost of a longer training time. We set the number of random
features to sample when splitting the nodes to build additional
tree branches equal to the number of features for regression
problems, i.e., the number of columns in the training/testing
matrix X. RFRs support the prediction of both scalars and
vectors, therefore they can be applied in the local- and the
cluster-based scenarios.

The third algorithm is GPR, i.e., a regressor that fits a
Gaussian Process over the input data [22]. It uses a prior with
zero mean, and the covariance matrix determined by a kernel.
For this problem, we chose a kernel with the following form:
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It is given by the sum of a dot product kernel, that can fit non-
stationary behaviors, a rational quadratic kernel with l = 1,
and a white kernel, that models the noisy part of the input.
We used the GPR for both single-output and multi-output
predictions.

C. Performance analysis

Before applying the aforementioned regressors to the whole
available dataset, we consider a sample cluster of N
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base station (obtained with the clustering process described
in [1]), whose relative positions are shown in Fig. 2.

Fig. 3 shows the average RMSE �̂ = E
i2C0 [�i

] of the
base stations in the set C0 associated to the sample cluster,
for different methods using either the local information only,
or the cluster-based approach, and a fixed value of the past
window W = 1. Among the local-based algorithms, the BRR
shows the best performance for all the values of the look-
ahead step L, with a reduction of the RMSE of up to 18% and
55% with respect to the GPR and RFR for L = 9. The GPR,
instead, yields better results than the RFR for the cluster-based
techniques, with an improvement up to 50% (for L = 1). As
expected, by increasing the look-ahead step L the prediction
accuracy decreases. However, when comparing the cluster- and
the local-based methods, the former perform better, especially
as the look-ahead step increases: the RMSE for the cluster-
based GPR saturates around �̂ = 14.8, while that for both
the BRR and the local-based GPR keeps increasing. For small
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the RMSE �̂. The values of W are reported in Table II.

Fig. 3: RMSE �̂ for different local- and cluster-based prediction methods, as
a function of the look-ahead step L, and for different windows W .

Look-ahead step L 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2
cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE II: Values of W for the plot in Fig. 3b for the BRR and the cluster-
based GPR

values of L, instead, the accuracy of local- and cluster-based
methods is similar.

Fig. 3b instead reports the RMSE varying the value of W ,
which is selected in order to minimize the RMSE �̂ for each
prediction method and value of L. Table II reports the values
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Performance evaluation

• Spatial correlation (cluster- vs local-based) is more 
impactful than temporal correlation

• Exploit geographic constraints on mobility flows
•When considering all the 472 eNBs (in 22 clusters):
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Fig. 4: Example of predicted vs true time series, for L = 3 (i.e., 15 minutes
ahead), W = 3 and the cluster-based GPR on two base stations for cluster 0.

W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of
the scenario in which the base stations are deployed actually
limits the possible movements of users across neighboring
cells. These constraints on the mobility flow translate into a
spatial correlation among the number of users in neighboring
base stations at time t and at time t+ L.

However, there are still some limitations to the accuracy of
the prediction. Fig. 4 reports an example of the true and the
predicted (for L = 3, i.e., 15 minutes) time series for two
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Fig. 5: Average cluster-based GPR vs local-based BRR for all the San
Francisco base stations.

Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

different base stations, with a low and high number of users.
It can be seen that the true time series exhibit daily patterns,
but also a high level of noise. As a consequence, the predicted
values manage to track the main trend of the true time series,
but do not represent the exact value of the number of users in
all cases. This is more noticeable with a low number of UEs,
as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach
on the sample cluster, we selected the best performing local-
and cluster-based methods, i.e., respectively, the BRR and the
GPR, and performed the prediction on all the base stations of
the San Francisco area, once again clustered according to the
approach in [1]. The average RMSE over all the base stations
is reported in Fig. 5. The cluster-based method consistently
outperforms the local-based one. The reduction in the average
RMSE over all the clusters E

clusters

[�̂] is 18.3% for L =
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Example of predicted timeseries

• Cluster-based GPR
• High number of users • Low number of users 
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Fig. 4: Example of predicted vs true time series, for L = 3 (i.e., 15 minutes
ahead), W = 3 and the cluster-based GPR on two base stations for cluster 0.

W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of
the scenario in which the base stations are deployed actually
limits the possible movements of users across neighboring
cells. These constraints on the mobility flow translate into a
spatial correlation among the number of users in neighboring
base stations at time t and at time t+ L.

However, there are still some limitations to the accuracy of
the prediction. Fig. 4 reports an example of the true and the
predicted (for L = 3, i.e., 15 minutes) time series for two
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Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

different base stations, with a low and high number of users.
It can be seen that the true time series exhibit daily patterns,
but also a high level of noise. As a consequence, the predicted
values manage to track the main trend of the true time series,
but do not represent the exact value of the number of users in
all cases. This is more noticeable with a low number of UEs,
as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach
on the sample cluster, we selected the best performing local-
and cluster-based methods, i.e., respectively, the BRR and the
GPR, and performed the prediction on all the base stations of
the San Francisco area, once again clustered according to the
approach in [1]. The average RMSE over all the base stations
is reported in Fig. 5. The cluster-based method consistently
outperforms the local-based one. The reduction in the average
RMSE over all the clusters E
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W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of
the scenario in which the base stations are deployed actually
limits the possible movements of users across neighboring
cells. These constraints on the mobility flow translate into a
spatial correlation among the number of users in neighboring
base stations at time t and at time t+ L.

However, there are still some limitations to the accuracy of
the prediction. Fig. 4 reports an example of the true and the
predicted (for L = 3, i.e., 15 minutes) time series for two
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Fig. 5: Average cluster-based GPR vs local-based BRR for all the San
Francisco base stations.

Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

different base stations, with a low and high number of users.
It can be seen that the true time series exhibit daily patterns,
but also a high level of noise. As a consequence, the predicted
values manage to track the main trend of the true time series,
but do not represent the exact value of the number of users in
all cases. This is more noticeable with a low number of UEs,
as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach
on the sample cluster, we selected the best performing local-
and cluster-based methods, i.e., respectively, the BRR and the
GPR, and performed the prediction on all the base stations of
the San Francisco area, once again clustered according to the
approach in [1]. The average RMSE over all the base stations
is reported in Fig. 5. The cluster-based method consistently
outperforms the local-based one. The reduction in the average
RMSE over all the clusters E

clusters

[�̂] is 18.3% for L =

Good tracking of daily patterns
Very noisy traces
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Use cases for the prediction

•Medium-timescale horizon (5 – 45 minutes)
• Network management and operations:
• Predictive load-balancing

• Bearer pre-configuration for anticipatory mobility

• Radio resource scaling

• New services to the end-users
• Vehicular route optimization with network KPIs

(provide transit directions tailored on the network performance)
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Vehicular route optimization with network KPIs
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(a) Map of the routes. The dots represent the visited base stations.

Notice that, for route 2 (the red one), several base stations are shared

with either the blue or the green routes.

Route R1 R2 R3 R4

Feb. 23rd, 19:00

Ŝ [Mbit/s] 1.93 2.51 2.36 2.74

D
o,max

[s] 133.47 157.8 172.5 171.2

Feb. 24th, 19:00

Ŝ [Mbit/s] 1.72 2.00 2.28 2.89

D
o,max

[s] 152.4 157 148.8 169.1

Feb. 24th, 19:20

Ŝ [Mbit/s] 2.05 2.49 1.98 2.86

D
o,max

[s] 152.1 123.7 172.5 116.7

(b) Average throughput ˆ

S and maximum outage duration D

o,max

on the four itineraries from Fig. 10, for different departure times

in February 2017. For the three routes with a similar duration, the

colored cells represent the best route for the metric of interest.

Fig. 10: Example of different routes in the San Francisco area to move from point A to point B.

is route 3 (green). When considering also the longest route, which still leads from the origin to

the destination, but takes 50% more time than the shortest, it can be seen that it always offers

the highest average throughput, but, in some cases, is one of the worst in terms of maximum

outage duration.

This example shows that, according to the users’ needs, it is possible to identify and select

different routes that have different performance in terms of throughput and outage. Moreover, the

routes are ranked differently according to various departure times. Therefore, simply applying the

analytics given by the average statistics from the previous days may not yield reliable results in

terms of routes ranking. This makes the case for adopting the medium-term prediction techniques

described in this Section to forecast the expected value of the metrics in the time interval in

which the user will travel, based on the actual network conditions for the same day.

VI. CONCLUSIONS

Machine learning, software-defined networks and edge cloud will be key components of the

next generation of cellular networks. In this paper we investigated how these three elements

can be jointly used in the system design for 5G networks, providing insights and results based

Predicted throughput 
(as a function of number of active users)

Predicted outage duration 
(as a function of number of active users)
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Conclusions
• Proposed a data-driven architecture for 5G networks

• Evaluation of learning approaches on a large-scale dataset 
from a network operator

• RAN clustering

• Prediction

• Exploiting spatial correlation is beneficial for medium-term 
prediction

• Reduction of the prediction error up to 53% 

• Enabler of new use cases – both for RAN control and innovative 
user services
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More details can be found in M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi, “Machine 
learning at the edge: A data-driven architecture with applications to 5G cellular networks,” 
submitted to IEEE Journal on Selected Areas of Communications, 2018. [Online]. Available: 
https://arxiv.org/abs/1808.07647 25
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