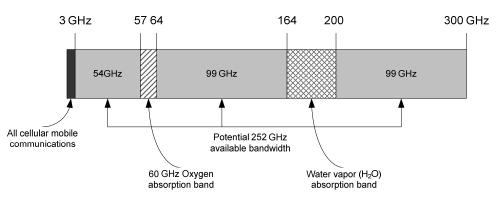
End-to-End Simulation of Integrated Access and Backhaul at mmWaves

Michele Polese^{*}, Marco Giordani^{*}, Arnab Roy^v, Sanjay Goyal^v, Douglas Castor^v, Michele Zorzi^{*}

> *University of Padova and CFR, Italy *InterDigital Communications, Inc., USA

> > polesemi@dei.unipd.it

Outline


- •Integrated Access and Backhaul in 3GPP NR
 - Motivation
 - Study Item
- •IAB implementation in ns-3 mmWave
 - IAB node
 - Control procedures
 - Dynamic scheduler
- •Results
- Conclusions

3GPP NR: mmWaves in cellular networks

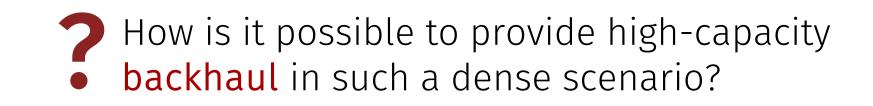
3GPP NR Rel. 15 will support frequencies up to 52.6 GHz

Potentials

- Bandwidth
- Large arrays in small space

Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in *IEEE Communications Magazine*, vol. 49, no. 6, pp. 101-107, June 2011.

Challenges


- High propagation loss
- Directionality
- Blockage

Backhaul for mmWave Deployments

High propagation loss + blockage

High deployment density

Integrated Access and Backhaul

3GPP Study Item for Release 16

Goals:

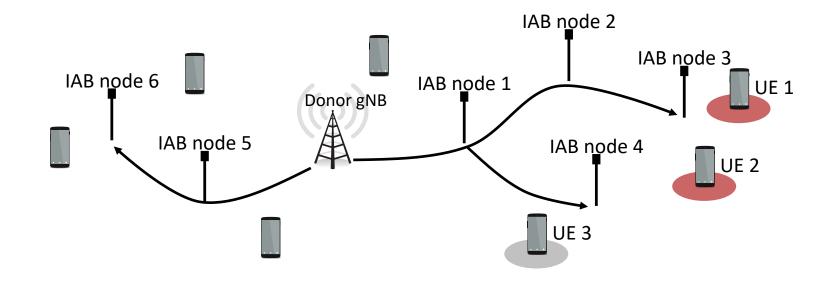
- Provide backhaul in dense deployments without densifying the transport network
- Support in-band and out-of-band backhauling
- IAB nodes should be transparent to UEs (no difference for the handset)
- Support multiple hops
- Perform self-adaptation of topology
- Reuse Rel.15 NR specifications

Integrated Access and Backhaul


- Opportunities
 - mmWave: high bandwidth for backhaul + spatial reuse
 - In-band backhaul -> no need for multiple frequency licenses
 - Plug-and-play design self-configuration of IAB nodes
- Challenges
 - Scalability
 - Efficient scheduling
 - Analyze cross-layer interactions

- Our contributions:
- Extend ns-3 mmWave with IAB functionalities
- Evaluate end-to-end performance of IAB

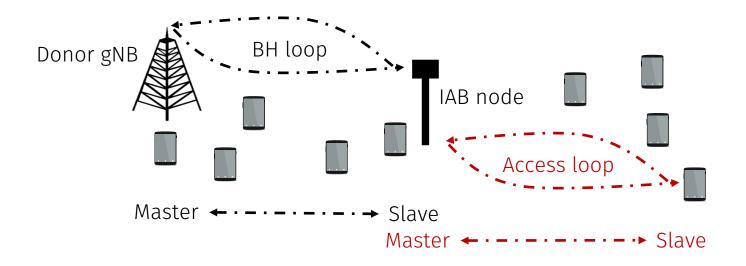
S IAB implementation in ns-3

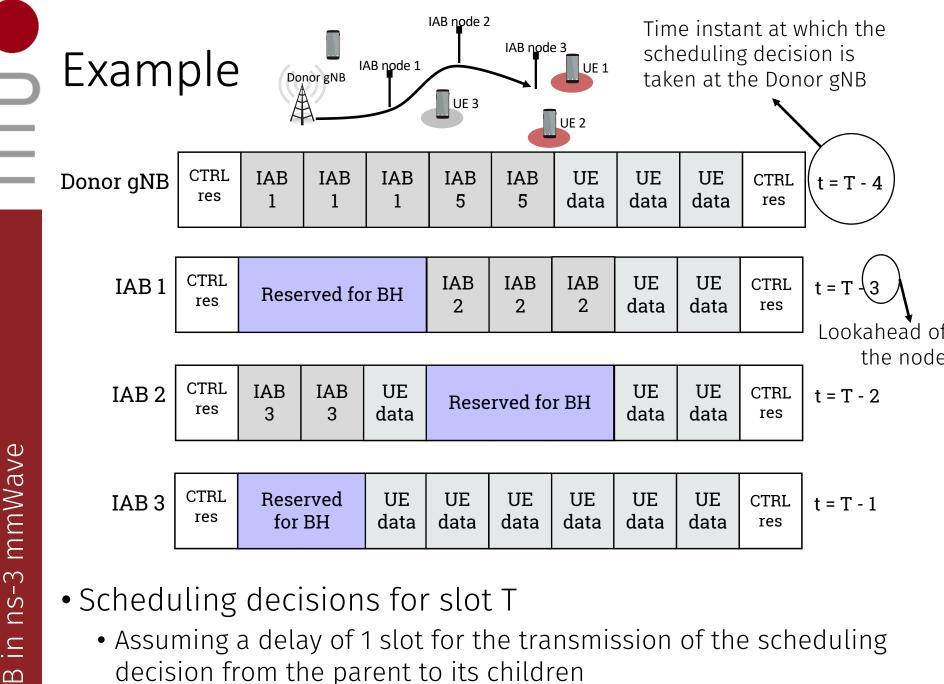

- Implement an IAB protocol stack in ns-3
 - New NetDevice
 - New overlay class to handle wireless backhaul
 - Similar to 3GPP proposed architecture 2b [1]
 - Work in progress: track 3GPP SI to match functionalities

[1] 3GPP, "Study on Integrated Access and Backhaul", TR 38.874 – V0.4.0 Rel. 15

Single- and multi-hop support

- Realistic control plane operations
 - Control plane for IAB nodes on wireless links
 - GTP tunnels for forwarding of control-plane-related packets
 - Autonomous access and configuration procedures
 - Routing

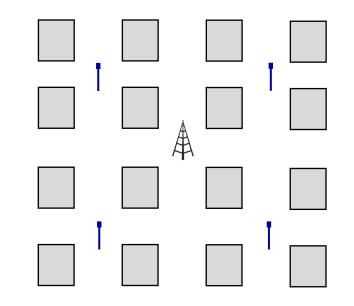



IAB Scheduler

- Scheduler is not specified by 3GPP room for innovation
- Dynamic scheduling: update according to traffic demand
 - In LTE, the backhaul/access partition is fixed
- Spanning tree topology
 - Scheduled access different from WiFi mesh
 - We focus on in-band backhaul with a TDD PHY/MAC
 - Currently, we implemented TDMA multiplexing
 - Future work: exploit mmWave spatial multiplexing

Look-ahead Backhaul-aware Scheduler

- Independent schedulers in each node
- Backhaul aware:
 - The scheduler in the IAB **access** is **aware** of the scheduling for the **backhaul** -> mark the resources as busy
- Look-ahead:
 - Each IAB node must know in advance the scheduling of its parent
 - Dynamic: update the look-ahead according to the depth of the tree

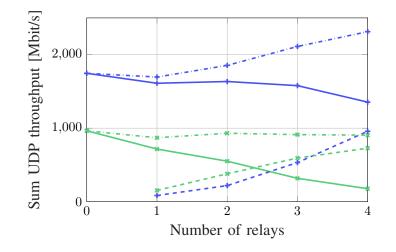


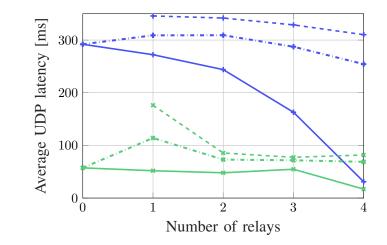
ns-3 mmWave .⊆ IAB

IAB Performance in grid scenario

• Preliminary evaluation: simple outdoor scenario

Parameter	Value
mmWave carrier frequency	28 GHz
mmWave bandwidth	1 GHz
3GPP Channel Scenario	Urban Micro
mmWave max PHY rate	3.2 Gbit/s
MAC scheduler	Round Robin
Subframe duration	1 ms
Donor gNB to remote server latency	11 ms
RLC buffer size B_{RLC} for UEs	10 MB
RLC buffer size B_{RLC} for IAB nodes	40 MB
RLC AM reordering timer	2 ms
UDP rate R	{28,224} Mbit/s
UDP packet size	1400 byte
Number of independent simulation runs	50


TABLE I: Simulation parameters


- From 0 to 4 IAB nodes
- 40 users randomly placed **outdoor**
- 3GPP channel model
- UDP traffic at rate $R \in \{28, 224\}$ Mbit/s per UE

End-to-end Performance for IAB

---- Donor gNB UEs, R = 224 Mbit/s ---- Donor gNB UEs, R = 28 Mbit/s ---- IAB nodes UEs, R = 224 Mbit/s ----- IAB nodes UEs, R = 28 Mbit/s ----- All UEs, R = 224 Mbit/s ------ All UEs, R = 28 Mbit/s

\rightarrow Donor gNB UEs, $R = 224$ Mbit/s	S — Donor gNB UEs, $R = 28$ Mbit/s
-+- IAB nodes UEs, $R = 224$ Mbit/s -*- IAB nodes UEs, $R = 28$ Mbit/s	
All UEs, $R = 224$ Mbit/s	- • - All UEs, $R = 28$ Mbit/s

Main findings:

- For high source rate, the relays improve the UDP throughput by improving the link quality for cell-edge users
- Offload the wired base station of cell-edge users -> lower latency for its UEs

Main takeaways on IAB

- IAB can provide an alternative to fiber for initial ultradense NR deployments
- We provide a tool for **end-to-end performance** evaluation
- Key design parameters for improved end-to-end performance:
 - Scheduler
 - Multi-hop attachment strategies
 - Spatial multiplexing (to be investigated)

M. Polese, M. Giordani, A. Roy, D. Castor, M. Zorzi, "Distributed Path Selection Strategies for Integrated Access and Backhaul at mmWaves", *IEEE GLOBECOM*, 2018.
M. Polese, M. Giordani, A. Roy, S. Goyal, D. Castor, M. Zorzi, "End-to-End Simulation of Integrated Access and Backhaul at mmWaves", *IEEE CAMAD*, 2018. https://github.com/signetlabdei/ns3-mmwave-iab More info: mmwave.dei.unipd.it

End-to-End Simulation of Integrated Access and Backhaul at mmWaves

Michele Polese^{*}, Marco Giordani^{*}, Arnab Roy^v, Sanjay Goyal^v, Douglas Castor^v, Michele Zorzi^{*}

> *University of Padova and CFR, Italy ^vInterDigital Communications, Inc., USA

> > polesemi@dei.unipd.it

