

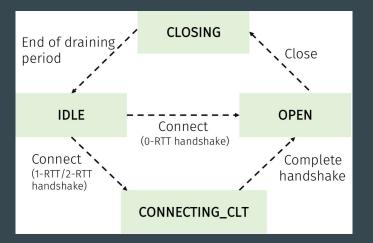
Università degli Studi di Padova

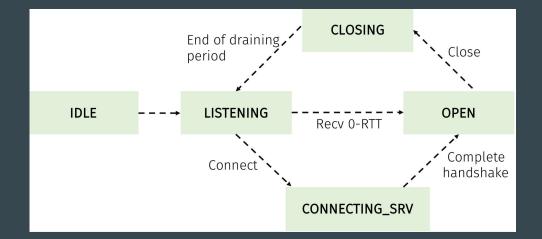
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

A QUIC implementation for ns-3

Alvise De Blasio, Federico Chiariotti, Michele Polese, Andrea Zanella, Michele Zorzi

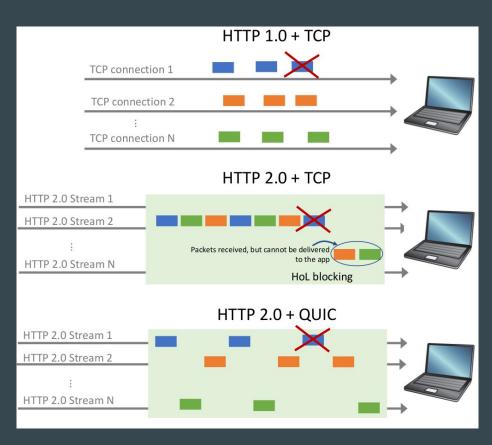
https://github.com/signetlabdei/quic-ns-3 https://apps.nsnam.org/app/quic/


The QUIC protocol


- Developed by Google in 2013, currently used for 30% of Google traffic
- IETF Internet Draft (ongoing standardization process)
- Runs over UDP and integrates TLS 1.3 support
- Native SACK support, better RTT estimation

Application	HTTP/2		HTTP/3	
Layer			QUIC	
Transport Layer	TCP Congestion Control Reliability	1	Congestion Control TLS Reliability Stream multiplexing	
			UDP	
Network	IP	IP IP		
Layer				

Connection setup


- 0-RTT: one-way packet from the client (for previously established pairs)
- 1-RTT: TCP-like handshake with TLS parameter negotiation
- 2-RTT: Version negotiation, then 1-RTT handshake

QUIC streams and HTTP

- 1. HTTP/1 opens a different TCP connection for every object, with a separate congestion control
- 2. HTTP/2 uses the same TCP connection, but packet loss for the first object can block subsequent ones
- 3. QUIC requires in-order delivery on a stream level, so HoL is prevented (HTTP/3)

The QUIC ns-3 module

- 1. Inherits the logic of the TCP implementation
- 2. The QuicSocketBase class performs the basic socket functions
- 3. The QuicL4Protocol class handles interactions with the underlying UDP socket
- 4. The QuicL5Protocol class manages streams
- 5. Basic stream functions are performed by the QuicStreamBase class

QuicStreamBase			
+Send() +StreamWindow() +Recv() +SendDataFrame() +()			
QuicL5Protocol			
QUICLSPIOLOCOI			
+DispatchSend() +DispatchRecv() +CreateStream() +()			
QuicSocketBase			
+SetCongestionControlAlgorithm() +SendInitialHandshake() +OnReceivedFrame() +OnReceivedAckFrame() +OnSendingAckFrame() +AvailableWindow() +ReTXTimeout() +SendDataPacket() +DoFastConnect() +ReceivedData() +()			
QuicL4Protocol			
+CreateSocket() +CreateUdpSocket() +UdpBind() +UdpSend() +UdpRecv() +ForwardUp() +SendPacket() +Is0RTTHandshakeAllowed() +()			

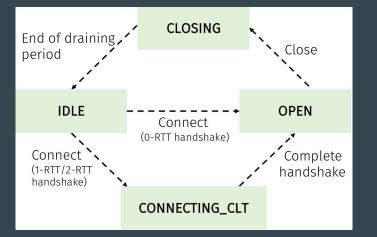
QUIC packet structure

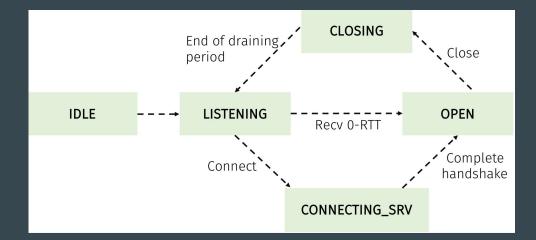
- Encapsulated into a UDP datagram
- The QuicHeader class implements the header
- Headers can be long (17 B, used in the connection setup) or short (2-13 B)
- The QuicSubheader class implements the frame subheader
- Data frames are associated to streams, control frames have a custom format

QUIC	Frame	Frame payload	Frame	Frame payload
header	subheader	(stream data)	subheader	(stream data)

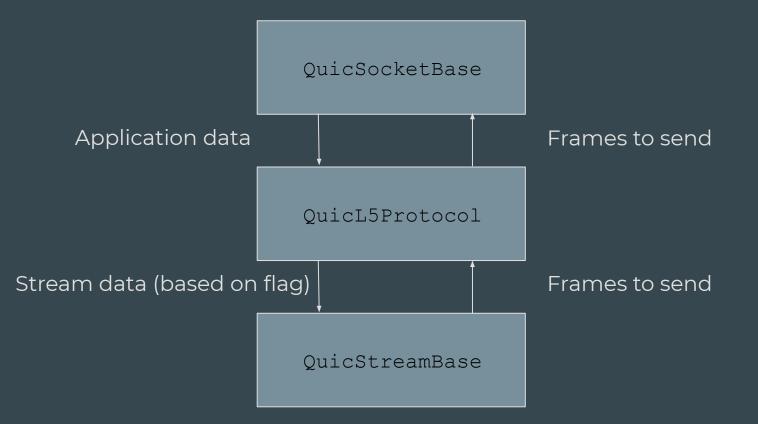
Connection setup: O-RTT

Connection setup: 1-RTT

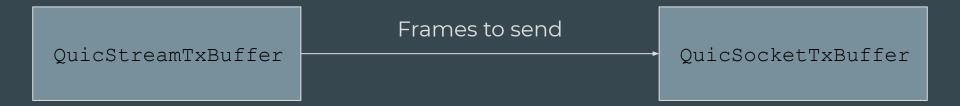



Connection setup: 2-RTT

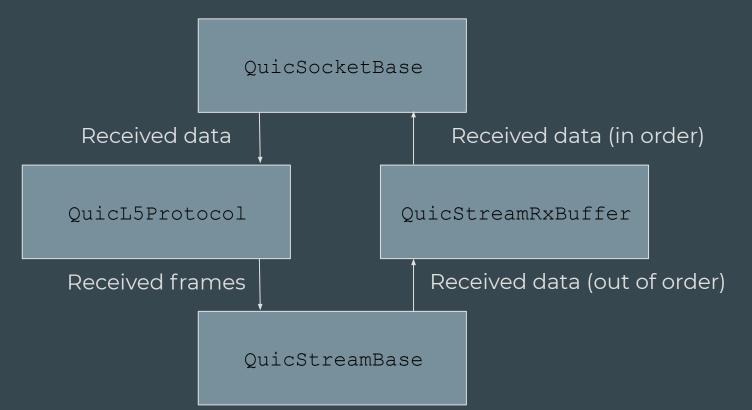
	CLIENT_HELLO	
Client	(version negotiation)	◆ Server
	REJECT	
	(with supported QUIC versions)	
	CLIENT_HELLO	
	(with specific QUIC version)	
	HANDSHAKE	
	(with crypto parameters)	


Connection setup in ns-3

- Simulated TLS handshake
- No need for external crypto libraries



Data flow in the QUIC module (sender)



QUIC: send buffers

- The socket buffer has a list of sent and waiting packets
- Stream 0 (control frames) frames are sent with high priority
- Retransmissions and ACKs are handled by the socket buffer
- The stream buffer stores packets and avoids socket buffer overflows

Data flow in the QUIC module (receiver)

QUIC: receive buffers

QuicStreamRxBuffer

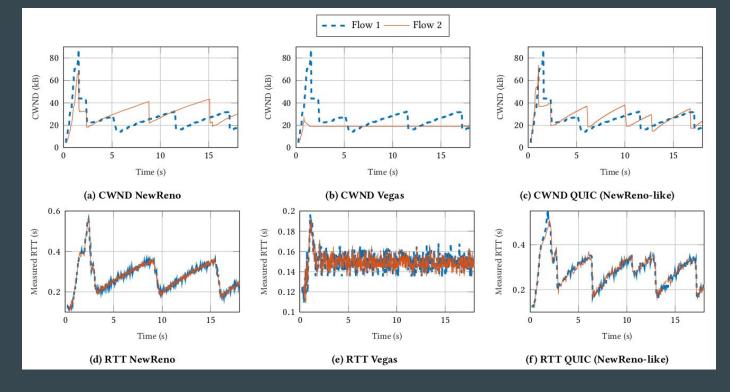
QuicSocketRxBuffer

- The socket disgregates received packets and passes frames to the stream
- The stream buffer handles reordering (for each stream)
- In-order bytes are written to the socket buffer
- The application reads a bytestream from the socket buffer

Congestion control

- Legacy mode: use TCP congestion control
- SetCongestionControlAlgorithm accepts any class that extends TcpCongestionOps

- QUIC draft mode: use QUIC-specific congestion control
- The QuicCongestionOps class extends TcpNewReno
- Full support for the QUIC Internet Draft specification


QUIC congestion control

- → Better RTT estimation (explicit receiver-side delay signaling)
- → Retransmitted packets have a different sequence number
- → Optional short loss timer (counted as DUPACK)

Congestion control - example

C = 2 Mb/s

RTT = 100 ms BDP ~ 50 kB

Future work

- Alignment with Release 18 of the QUIC IETF Draft
- Integration with BBR congestion control
- Extended unit tests and full special frame support
- Development of HTTP/3 traffic models

Thanks for your attention!

GitHub repository: <u>https://github.com/signetlabdei/quic-ns-3</u> ns-3 app store: <u>https://apps.nsnam.org/app/quic/</u>

Università degli Studi di Padova DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE