Mobility-aware Handover Strategies in Smart Cities

Massimo Dalla Cia^{*}, Federico Mason^{*}, Davide Peron^{*}, Federico Chiariotti^{*}, *Michele Polese*^{*}, Toktam Mahmoodi^v, Michele Zorzi^{*}, Andrea Zanella^{*}

*Department of Information Engineering, University of Padova, Italy ^VDepartment of Informatics, King's College, London, United Kingdom

michele@polese.io August 30, 2017

ISWCS 2017, Bologna

Outline

- Introduction
- Handover in HetNets
- Mobility data
- Asymmetrical Handover Bias
- Conclusions

IoT impacts the network

A Smart City gathers data from IoT sensors

IoT introduces an additional load in the network

SymbioCity

Smart City data can be used by the network to increase its awareness

Heterogeneous Networks

- Cells of different sizes and capabilities
- Tons of parameters to tune
- Perfect fit for SONs

Mobility procedures (handovers) are an issue

- Frequent HO
 - Dense cells
 - Small cells
- RSS-based

- Frequent HO
 - Dense cells
 - Small cells
- RSS-based

- Frequent HO
 - Dense cells
 - Small cells
- RSS-based

- Frequent HO
 - Dense cells
 - Small cells
- RSS-based

SymbioCity application: avoid ping-pong & increase capacity

London UTC network

Traffic light timing optimization to reduce congestion

Speed estimation

- $T_s = 250 \text{ ms}$
- Vehicle length L (we assume L = 4 m)
- Number of 1's n

$$v = \frac{L}{nT_s}$$

Example

Hourly average, January 23, 2015. Intersection between Homerton High St. and Daubeney Rd.

Scenario

$P_{RX}^{H}(t) = P_{TX}^{H}(t)\Psi_{SH}\alpha(t)h(f_0,\beta,d)$

$$P_{RX}^{H}(t) = P_{TX}^{H}(t)\Psi_{SH}\alpha(t)\frac{h(f_0,\beta,d)}{h(f_0,\beta,d)}$$
$$h(f_0,\beta,d) = A\left(\frac{c}{4\pi f_0}\right)^2 \left(\frac{d}{d_0}\right)^{-\beta}$$

$$P_{RX}^{H}(t) = P_{TX}^{H}(t)\Psi_{SH}\alpha(t)h(f_{0},\beta,d)$$
$$h(f_{0},\beta,d) = A\left(\frac{c}{4\pi f_{0}}\right)^{2}\left(\frac{d}{d_{0}}\right)^{-\frac{\beta}{\text{Pathloss}}}_{\text{exponent}}$$
$$Carrier Frequency Distance$$

$$P_{RX}^{H}(t) = P_{TX}^{H}(t)\Psi_{SH}\alpha(t)h(f_0,\beta,d)$$
$$h(f_0,\beta,d) = A\left(\frac{c}{4\pi f_0}\right)^2 \left(\frac{d}{d_0}\right)^{-\beta}$$

ISWCS 2017, Bologna

Parameters

Parameter	Value	Description
$\overline{P_{TX}^M}$	46	MeNB transmission power [dBm]
P_{TX}^F	26	FeNB transmission power [dBm]
f_0^M	900	MeNB carrier frequency [MHz]
f_0^F	1800	FeNB carrier frequency [MHz]
B	20	Bandwidth [MHz]
d_{M-F}	40	Distance between MeNB and FeNB [m]
d_{F-UE}	10	Distance between FeNB and UE [m]
σ_M^2	8	MeNB log-normal shadowing variance
σ_F^2	4	FeNB log-normal shadowing variance
$ar{eta_M}$	4.28	MeNB pathloss exponent (NLOS)
eta_F	3.76	FeNB pathloss exponent (LOS)

ISWCS 2017, Bologna

$$P_{RX}^{M}(t) + B_2 > P_{RX}^{F}(t)$$

SNR with and without bias

ISWCS 2017, Bologna

Spectral Efficiecy

Bias values

ISWCS 2017, Bologna

Conclusions

- SymbioCity idea: smarter networks with Smart City data
- Application: handover in HetNets
 - Data from TfL
 - Range expansion bias
 - Increased efficiency without ping pong
- Future works
 - Dynamic vMME allocation
 - Integration with more data

Mobility-aware Handover Strategies in Smart Cities

Massimo Dalla Cia^{*}, Federico Mason^{*}, Davide Peron^{*}, Federico Chiariotti^{*}, *Michele Polese*^{*}, Toktam Mahmoodi^v, Michele Zorzi^{*}, Andrea Zanella^{*}

*Dept. of Information Engineering, University of Padova, Italy ^V Department of Informatics, King's College, London, United Kingdom

michele@polese.io August 30, 2017

ISWCS 2017, Bologna