ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz

Menglei Zhang^v, *Michele Polese*^{*}, Marco Mezzavilla^v, Sundeep Rangan^v, Michele Zorzi^{*}

^v NYU Wireless, Brooklyn, NY, USA *Dept. of Information Engineering, University of Padova, Italy

J WIRELESS

michele@polese.io May 1st, 2017

Outline

- Introduction
- mmWave channel models
 - 3GPP channel model for freq. above 6 GHz
- ns-3 implementation
 - Antenna model
 - Propagation
 - Fading
- Beamforming
- Optional features
- Conclusions

mmWave simulation

Candidate technology for 3GPP NR

- End-to-end simulation to evaluate protocol stack performance over mmWaves
- ns-3-based mmWave module
- Contributions:
 - Implementation of 3GPP Channel Model for frequencies above 6 GHz
 - MIMO beamforming architectures

mmWave channel models

- Spatial Channel Model (SCM) based:
 - METIS model (380 MHz 86 GHz)
 - ITU-R
 - QuaDRiGa
 - NYU statistical model (28 and 73 GHz)
- MiWEBA (60 GHz)
- COST 2100

SCM models

From: 3GPP Spatial Channel Model

3GPP TR 38.900

- December 2016
- SCM-based channel model
- ■6 100 GHz band
- Max 2 GHz bandwidth

Scenarios

- Urban Microcell (UMi)
- Urban Macrocell (UMa)
- Rural Macrocell (RMa)
- Indoor Office open (InOO) or mixed (InMO)

Different parameters & possible deployments for each scenario

LOS - Pathloss

- Statistical model for LOS probability
- Pathloss depends on
 - LOS condition
 - 2D and 3D distance
 - Elevation of base station and mobile terminal
 - Carrier frequency
- Additional loss factor for
 - Outdoor to indoor
 - Vehicular

Fading

num RX antennas

- Channel matrix $H(t,\tau)$ of size $(U) \times (S)^{\prime}$
- Each entry depends on
 - N clusters of M rays
 - LOS condition
 - Carrier frequency
 - Distance
 - Mobility
 - Indoor/outdoor state
 - Scenario

num TX antennas

Optional Features

- Basic model (propagation and fading) can be extended with
 - Spatial consistency (update the channel parameters in a correlated way in mobility scenarios)
 - Oxygen absorption (additional pathloss)
 - Blockage (some clusters are removed)
 - Support for larger bandwidth

Channel generation procedure

From: 3GPP TR 38.900

ns-3 implementation

Configuration

- Currently based on MmWaveNetDevices
 - Generalization as future work
- Example: MmWave3gppChannelExample
 - Select the pathloss model
 - Select the channel model
 - Force LOS condition
 - Activate optional features

Antenna Modeling

- AntennaArrayModel class
- Uniform Planar Array
 - Rectangular panel
- Configurable parameters

- Number of antennas in base stations and users
- Horizontal and vertical spacing (d_h, d_v)
- Different radiation patterns
- Single panel per base station
 - Future work: extend to multi-sectors

LOS and propagation

3GPP Statistical Model MmWave3gppPropagationLossModel

Geometric Model MmWave3gppPropagationBuildings-LossModel

 $P_{los}(d_{2D}, scenario, h_{user})$

Geometric LOS

WNS3 2017, Porto

- Random or deterministic objects
- 3D tracing
- Correlated LOS/NLOS conditions
- Outdoor to indoor penetration
- Different penetration loss for BuildingTypes

Shadowing

Optional

- Spatially correlated for a moving user
- Shadowing s_t at time t is

$$s_t = \underbrace{R(\Delta d_{2D})}_{t_{prev}} + \left(\sqrt{1 - R^2(\Delta d_{2D})}\right) \sigma_{SF} z, \quad z \sim N(0, 1),$$

- Decorrelation coefficient (exp in the distance Δ_{2D} from last update)
- Decorrelation distance and shadowing standard deviation dependent on the scenario

Pathloss

3D distance (m)

Data structures

• For each TX-RX pair we store the useful variables

Param	Description
m_txW	complex vector with antenna weights for the tx
m_rxW	complex vector with antenna weights for the rx
m_channel	complex 3D matrix Ĥ
m_delay	double vector with cluster delays $d_n, n \in [1, N]$
m_angle	double matrix with AoA, ZoA, AoD and ZoD
m_longTerm	complex vector with long term fading parameters

 Large scale fading correlation coefficients are generated offline

- One antenna panel per each base station
- Vertical polarization
- Doppler effect applied only to central ray of each cluster

Beamforming

- TDD frames at physical layer
- Analog MIMO beamforming
 - Phase shift for each antenna element
- Two options
 - Long-term Covariance Matrix method
 - Simplified Cell Scan
- BF vectors updated after large scale fading update

Long Term Covariance Matrix

- Optimal beamforming vectors w_{tx}, w_{rx}
- Assumption -> channel matrix $H(t, \tau)$ is known
- Procedure for w_{tx}
 - 1. Compute spatial correlation matrix $Q_{tx} = E[H^{\dagger}H]$
 - 2. Pick the eigenvector associated to the largest eigenvalue
- Possible extensions
 - Delay between channel update and BF update
 - Limit BF update frequency

- No need to know channel matrix $H(t,\tau)$
- Limited set *D* of possible directions
- Scan set D at Tx and Rx
- Current implementation -> simplified
- Possible extensions
 - More realistic beam tracking mechanisms
 - Interaction and feedback between Tx and Rx

Cell Scan example

- Useful for mobility-based simulations
- Every t_{per} (configurable) update consistently
 - Cluster delays
 - Cluster powers
 - Angles of arrival and departure
- Re-compute the beamforming vectors

Spatial Consistency

Blockage

- Additional per-cluster attenuation
 - Self-blocking -> 30 dB
 - Non-self-blocking -> dependent on scenario and angles
- Correlated blocking in space and time
- Number of blockers K is configurable

Blockage

WNS3 2017, Porto

Conclusions

- Implementation of the 3GPP channel model for the mmWave module
 - LOS
 - Propagation
 - Fading
 - Beamforming
 - Optional features
- Future works
 - Extension of beamforming models
 - Possible integration with other ns-3 modules

ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz

Menglei Zhang^v, *Michele Polese*^{*}, Marco Mezzavilla^v, Sundeep Rangan^v, Michele Zorzi^{*}

^v NYU Wireless, Brooklyn, NY, USA *Dept. of Information Engineering, University of Padova, Italy

J WIRELESS

michele@polese.io May 1st, 2017

