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IoT: Internet of Threats?
A survey of practical security vulnerabilities

in real IoT devices
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Abstract—The Internet of Things (IoT) is rapidly spreading,
reaching a multitude of different domains, including personal
health care, environmental monitoring, home automation, smart
mobility, and Industry 4.0. As a consequence, more and more
IoT devices are being deployed in a variety of public and
private environments, progressively becoming common objects
of everyday life. It is hence apparent that, in such a scenario,
cybersecurity becomes critical to avoid threats like leakage of
sensible information, denial of service attacks, unauthorized
network access, and so on. Unfortunately, many low-end IoT
commercial products do not usually support strong security
mechanisms, and can hence be target of - or even means for
- a number of security attacks. The aim of this paper is to
provide a broad overview of the security risks in the IoT sector
and to discuss some possible counteractions. To this end, after a
general introduction to security in the IoT domain, we discuss
the specific security mechanisms adopted by the most popular
IoT communication protocols. Then, we report and analyze
some of the attacks against real IoT devices reported in the
literature, in order to point out the current security weaknesses
of commercial IoT solutions and remark the importance of
considering security as an integral part in the design of IoT
systems. We conclude the paper with a reasoned comparison of
the considered IoT technologies with respect to a set of qualifying
security attributes, namely integrity, anonymity, confidentiality,
privacy, access control, authentication, authorization, resilience,
self organization.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging communi-
cation paradigm that aims at connecting different kinds of
objects to the Internet, in order to harvest data generated by
sensors, remotely control appliances and machines, monitor
environments, vehicles, and buildings, and so on [1]. The
number and variety of IoT devices have rapidly grown in
the last years, with a prediction of over 50 billions devices
connected to the Internet by 2020 [2]. Thanks to a plethora of
new “smart” services and products, such as smart appliances,
smart houses, smart watches, smart TVs, and so on, the IoT
devices are quickly spreading in all environments, becoming
everyday more pervasive. Moreover, many of such smart
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services require users to intentionally reveal some personal
(and, sometimes, private) information in change for advanced
and more personalized services. It is then clear that security
and privacy should be of primary importance in the design of
IoT technologies and services. Unfortunately, this is not the
case for many IoT commercial products that are provided with
inadequate, incomplete, or ill-designed security mechanisms.

In the last years, growing attention has been dedicated to the
risks related to the use of simple IoT devices in services that
have access to sensitive information or critical controls, such
as, video recoding of private environments, real-time personal
localization, health-monitoring, building accesses control, in-
dustrial processes, traffic lights [3], [4]. Furthermore, some
security attacks against commercial IoT devices have appeared
in the mass media, contributing to raise public awareness of
the security threats associated with the IoT world.

In order to make commercial IoT devices more resilient
to cyber attacks, security should be taken into account right
from the design stage of new products [5]. However, the wide
heterogeneity of IoT devices hinders the development of well-
established security-by-design methods for the IoT [6], [7].
The challenge is further complicated by the severe limits in
terms of energy, communication, computation, and storage
capabilities of many IoT devices. Such limits indeed prevent
the possibility of adopting standard security mechanisms used
in more traditional Internet-connected devices [8], and call for
new solutions that, however, are not yet standardized.

Besides the technical aspects, it is also necessary to de-
velop a cybersecurity culture among the IoT stakeholders,
in particular manufacturers and final users. As a matter of
fact, many IoT device manufacturers come from the market
of low-cost sensors and actuators f(e.g., home automation,
lights control, video surveillance, and so on). Such devices
were originally designed to work in isolated systems, for
which the security threats are much more limited. As a conse-
quence, many manufacturers do not possess a solid expertise
in cybersecurity and may be unaware of the security risks
associated with connecting their devices to a global network.
Such a lack of know-how, together with the hectic approach
to the design of new products and the need to compress
costs and time-to-market have led to the commercialization
of IoT products where security is either neglected or treated
as an afterthought [9]. In parallel, the final users are also not
much educated in terms of security practices and often fail
to implement even the most basic procedures to protect their
devices as, e.g., changing the pre-installed password of the
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devices on first use. Such an underestimation of their role in
protecting personal devices makes users themselves unaware
and unintentional allies of possible attackers.

The aim of this paper is hence to provide an up-to-date
vision of the current IoT cybersecurity scenario, contributing
to improve the awareness of the threats that IoT devices may
represent. To this end, the paper will discuss the origins of
such threats and the possible counteractions. The problems
related to cybersecurity in IoT systems have already been
addressed by other works in the literature as, e.g., [6], [10]–
[15]. Unlike such papers, here we address the topic from a
more practical perspective. After a quick introduction to the
cybersecurity, we focus on the specific problems of the IoT do-
main, where devices may not even support basic features, such
as random number generation or standard encryption routines.
We hence consider the four communication protocols mostly
used in commercial IoT devices, namely Zigbee, Bluetooth
Low Energy, 6LoWPAN, and LoRaWAN. We briefly recall
the security procedures supported by each protocol and, hence,
analyse the attack surface, also reporting a series of real attacks
against popular commercial IoT devices as examples of the
risks associated with poorly designed security mechanisms.
Furthermore, we describe the processing units, communication
protocol, and cryptographic hardware and software used in
some commercial IoT devices, to offer an idea of the solutions
currently adopted in the market. This study can then be useful
to readers and practitioners interested to grasp the more practi-
cal implications of IoT security. Furthermore, the comparative
analysis presented at the end of the manuscript reveals some
gaps in the literature that call for further investigation and
experimentation.

Fig. 1 provides a visual representation of the paper organiza-
tion, which is as follows. Sec. II and Sec. III are introductory
to the following analysis. More specifically, Sec. II recalls
the main functionalities of an IoT system and the related
security challenges, while Sec. III describes the main security
algorithms and protocols considered in this paper. Moreover,
we will provide some details related to the implementations of
security protocols in the chipsets commonly used in commer-
cial IoT devices. Sec. IV is dedicated to the communication
protocols for the IoT. We briefly recall the main characteristics
of each technology, focusing in particular on its native security
mechanisms. Then, we provide a critical analysis of the attack
surface, i.e., of the possible vulnerabilities related to that
protocol. In Sec. V, we report practical implementation details
of widespread IoT solutions, discussing in particular some
hardware aspect as the micro-controller and the connectivity
modules which have a role in determining the security level
of such devices. Finally, in Sec. VI we provide a qualitative
comparison of the devices considered in this study, and we
conclude the paper with some open research directions in
Sec. VII.

II. SECURITY CHALLENGES IN THE IOT DOMAIN

As discussed in the remainder of the paper, the attacks
against IoT devices are often simple and easy to conduct.
They could be performed in order to break user privacy and
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Figure 1. Structure of the paper and relations among the security aspects.

leak personal sensible information. The collected data can
indeed range from simple room temperature and humidity
measurements, to more sensible information such as the heart-
rate signal, or the user’s location and living habits. Another
common attack strategy consists in compromising one device
in the IoT network and use it as a beachhead to perform
fraudulent acts towards another network node [16].

In order to set a common ground for the discussion that will
follow in the next sections, here we provide a broad overview
of the IoT security requirements and of the related challenges.

A. Security requirements

To begin with, we present a taxonomy of the security
requirements for an IoT system with respect to the different
operational levels, that is to say, at the Information, Access,
and Functional level [17], [18].

– Information level: At this level, security should guarantee
the following requirements:

• Integrity: the received data should not been altered during
the transmission.

• Anonymity: the identity of the data source should remain
hidden to third parties.

• Confidentiality: data cannot be read by third parties. A
trustworthy relationship should be established between
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IoT devices in order to exchange protected information.
Replicated messages must also be recognizable.

• Privacy: the client’s private information should not be
disclosed during the data exchange. It must be hard to
infer identifiable information by eavesdroppers.

– Access level: it specifies some security mechanisms to
control the access to the network. More specifically, it provides
the following functionalities:

• Access control: it guarantees that only legitimate users
can access to the devices and the network for administra-
tive tasks (e.g., remote reprogramming or control of the
IoT devices and network).

• Authentication: it checks whether a device has the right
to access a network and whether a network has the right
to connect the device. This is likely the first operation
carried out by a node when it joins a new network [19].
Note that devices have to provide strong authentication
procedures in order to avoid security threats. For example,
if all the IoT devices produced by the same manufacturer
are configured with the same authentication credentials,
then the hacking of one device may compromise all of
the security aspects at the information level.

• Authorization: it ensures that only the authorized devices
and the users get access to the network services or
resources.

– Functional level: this level defines the security requirements
in terms of the following criteria:

• Resilience: it refers to network capacity to ensure security
for its devices, even in case of attacks and failures.

• Self organization: it denotes the capability of an IoT
system to adjust itself in order to remain operational
even in case of failure of some parts due to occasional
malfunctioning or malicious attacks.

B. Taxonomy of security attacks

Besides the requirements and mechanisms at the informa-
tion, access, and functional levels, it is important to understand
which are the vulnerabilities and the possible attacks at the
different layers of the communication stack. As explained
in [20], the communication architecture of an IoT system can
be roughly divided in Edge, Access, and Application layers.
The Edge Layer provides PHY and MAC functionalities for
local communications. The Access Layer grants the connection
to the rest of the world, usually through a gateway device and
a Middleware Layer that acts as intermediary between the IoT
world and the standard Internet. Finally, the Application Layer
takes care of the service-level data communications. In the
following we present a possible taxonomy of the attacks that
can target these communication layers.
– Edge Layer: One of the main threats at this level is
represented by the side channel attacks [21]. The goal of
these attacks is to leak information from the analysis of side
signals, such as power consumption, electromagnetic emis-
sions, and communication timing, while nodes are performing
encryption procedures. Among them, the power consumption
of the devices is widely exploited to guess and recover the

encryption secret keys. For each encryption operation, a power
trace can be captured: the power data is generally computed
from the voltage difference across a resistor inserted in series
with the power supply. Simple power analysis attacks try to
directly interpret the power traces related to a small number of
encryption rounds. Instead, the differential power analysis is
a more effective and advanced approach: a bigger amount of
traces are statistically analyzed in order to extract additional
encryption information [22]. At the edge layer, IoT devices
are also vulnerable to Hardware Trojan and Denial of Service
(DoS) attacks that attempt to make resources unavailable
to the legitimate users, e.g., by forcing the device to exit
sleep (low-power consumption) mode in order to drain their
batteries, or by jamming the radio communications. Also,
the device package can be tampered with, e.g., to extract
the cryptographic secrets of the device, modify its software
to disguise a malicious node as a legacy one (camouflage),
or attempt reverse engineering to figure out the details of
proprietary communication protocols and possibly reserved
information (as patent-covered algorithms).

– Access/Middleware Layer: at this level the main attacks
are eavesdropping (also called sniffing), injection of fraudu-
lent packets and non-authorized conversations. Even routing
attacks have to be taken into account: an attacker may use
this kind of attack to spoof, redirect, misdirect, or drop data
packets.

– Application Layer: attacks at the application layer are quite
different from the previous ones, since they directly target the
software running on the devices rather than the communication
technology. Such attacks may address the integrity of, e.g.,
machine learning algorithms, where the attacker manipulates
the training process of the learning algorithm to induce
misbehaviors. There can also be attacks on the login and
authentication phases.

In [17] and [23], the authors present an in-depth analysis of
all these aspects, where they discuss some of the major vul-
nerabilities presented above, proposing solutions at different
layers, from the device side to the cloud services.

In [24], the possible attacks against IoT devices are pre-
sented from a different standpoint, i.e., by considering how an
attacker can exploit the IoT device for malicious purposes. The
authors identify four possible approaches, as detailed below.

– Ignoring the functionality: this class includes all the attacks
in which the specific functionalities of the IoT device are
ignored, and only its capability to connect to the Local Area
Network (LAN) or to the Internet is exploited. For example,
IoT devices can be used to create a bot-net (a network
completely controlled by the attacker) or to penetrate the
victim’s home network and infect his/her computers.

– Reducing the functionality: in this case, the attacker tries
to kill or limit the functionalities of the device, in order to
annoy the victim or create malfunctions in a wider system. For
example, this type of attack may be directed to IoT devices
like smart TVs or smart refrigerators, with the aim of blocking
or limiting their functioning in order to extort money from the
victim for restoring their normal behavior.
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– Misusing the functionality: the normal functionalities of
the IoT devices are used to create discomfort to its owner.
For example, an attacker may tamper a Heating, Ventilation,
and Air-Conditioning (HVAC) control unit and make a cer-
tain environment uncomfortable by excessively increasing or
decreasing the temperature. Similarly, the attack may target a
smart light system, getting remote control over the lights in a
room or building, overwriting the victims’ commands.

– Extending the functionality: the IoT device is used to
achieve completely different functionalities. For example, a
presence sensor of an alarm system may be used to track the
position of the victims in their living environment, even when
the alarm system is off.

III. MAIN SECURITY MECHANISMS FOR IOT SERVICES

In this section, we present standard security mechanisms
that have been designed to satisfy the requirements described
in the previous section.

– Encryption: it is the main and most important operation to
ensure confidentiality during the communication. It consists
in changing the actual message (plaintext) into a different
one (ciphertext) using a hash function that can be easily
reverted only knowing a secret key. Using encryption, a
possible eavesdropper can only have access to the ciphertext,
but should not be able to interpret the content of the message.
The encryption mechanism can be symmetric or asymmetric.
In symmetric encryption, the same secret key is used both
for message encryption and decryption, and hence it must be
known by both the sender and the receiver. In the asymmetric
case, each endpoint needs to possess its own pair of keys: a
public key and the associated private key, which cannot be
easily derived from the public one. The public key can be
known to anyone, while the private key should be kept secret.
The public and private keys are designed in a way that a
message encrypted with the former can only be decrypted with
the latter. Therefore, to guarantee confidentiality, the message
is encrypted by the sender by using the public key of the
receiver, which can then recover the original message by using
its own private key.

– Standard encryption mechanisms. The encryption process
can be performed in two different ways: through a stream
cipher, encrypting the plaintext bit-by-bit (or byte-by-byte) or
with a block cipher, treating a block of plaintext as a whole
and producing a block of ciphertext of equal length [25]. To
encode long messages, block ciphers can be used in different
operating modes: Electronic CodeBook (ECB), Cipher Block
Chaining (CBC), Cipher FeedBack (CFB), Output FeedBack
(OFB) and Counter (see [26] for details).

One of the most used block cipher for symmetric encryption
is the Advanced Encryption Standard (AES) (or Rijndael),
published in 2001 by the National Institute of Standards and
Technology (NIST) [27]. AES is obtained through the cascade
of N successive series of three elementary block ciphers: a
substitution cipher, a transposition cipher, and a linear cipher.
Fig. 2 shows the first three blocks of the chain, which are
repeated to obtain the final encryption. Depending on the
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Figure 2. Encryption for the AES block cipher. The three blocks, Substitution
(S), Transposition (T), and Linear (L) ciphers, are repeated to obtain the final
encryption. In the diagram, k0 and k1 are the lower and upper parts of the
encryption key, u denotes a block of plaintext to be encrypted, and the other
symbols represent the block after each encryption module.

length (in number of bits) of the key, the algorithm takes the
name of AES-128, AES-192 or AES-256.

Examples of asymmetric cryptosystems are the Rivest
Shamin Adleman (RSA) [28], the McEliece [29] and the
ElGamal [30] algorithms.

Encryption can also be used to provide authentication and
integrity protection, but in most cases these functionalities
require additional mechanisms, in particular in IoT systems.

In practice, authentication and integrity protection are pro-
vided by means of message authentication codes (symmetric
mechanisms), digital signatures (asymmetric mechanisms) and
hash functions. For what concerns message authentication
codes and digital signatures, the transmitted message is the
result of the concatenation of the plaintext and a tag computed
from the plaintext using the private key. At the receiver side,
a tag is computed using the private or public key (depending
on whether we opted for a symmetric or asymmetric process)
and it is compared to the transmitted tag.

For example, many IoT services require to broadcast the
same message to many destinations. If the message is en-
crypted by the transmitter, all the destinations need to decrypt
the ciphertext to check the authenticity of the sender and
retrieve the message. This operation requires time and drains
energy from the device battery. If confidentiality is not an
issue, a better solution may consist in sending the message
in plaintext, attached with a tag that identifies the sender. The
verification of the message authenticity can then be performed
by one designated and trusted receiver, while all the other
nodes can just read the message, without wasting time and
resources [25].

The tag is usually obtained by using a good encryption func-
tion, such as AES, as in the Cipher Block Chaining Message
Authentication Code (CBC-MAC) symmetric mechanism [31].
An asymmetric mechanism for tag computation is the Digital
Signature Algorithm (DSA), part of the ElGamal signatures
family, published in 1991 by NIST with the Federal Informa-
tion Processing Standard (FIPS) 186 [32], and revised multiple
times in the following years. In 2009, for example, FIPS
186 included the Elliptic Curve Digital Signature Algorithm
(ECDSA). An alternative asymmetric mechanism is RSA [28],
which implements hash functions other than those of the
previous two mechanisms. In fact, such hash functions map
messages of any length into fixed length hash values, which
are then transmitted with the messages. The hash functions
are practically constructed through a Merkle-Damgard scheme
[33], [34]. The most known functions are: MD-5 that produces
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a 128-bit hash, SHA-1 with a 160-bit hash, and SHA-256 and
SHA-512 that produce 256 and 512-bit hash, respectively.

For what concerns IoT applications, the Constrained Appli-
cation Protocol (CoAP), defined by IETF in RFC 7252 [35],
recommends to use the AES Counter with CBC-MAC, which
is compactly indicated as AES-CCM. This mechanisms makes
use of 128 bit keys and generate 8 bit authentication tags. The
Ephemeral Elliptic Curve Diffie Hellman (ECDHE) method is
instead recommended for key establishment, and the ECDSA
for authentication.

– Lightweight cryptography. Given the growth of the num-
ber of connected, low-complexity IoT devices, the research
community has tried to design specific security algorithms
for resource and energy constrained devices. Lightweight
cryptography is a new branch of cryptography that focuses
on these aspects, including new encryption block and stream
ciphers, message authentication codes and hash functions,
which are conceived to be executed by devices with limited
computation, communication, and storage capabilities. In 2012
the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) pub-
lished the ISO/IEC 29192 standard that specifies a series of
lightweight encryption mechanisms [36], included the block
ciphers PRESENT [17] and CLEIFA [18]. PRINCE is another
lightweight block cipher, not included in the standard [37].
Moreover, the Simon and Speck families of lightweight block
cipher were presented by Beaulieu et al. in [38]. As lightweight
hash function, ISO/IEC 29192 standard proposed PHOTON
[39] and SPONGENT [40]. In 2013 NIST started a lightweight
cryptography project to investigate and develop solutions for
real-world applications. At the beginning of 2019 NIST has
published a call for algorithms for lightweight cryptography:
after discussion and evaluation, the algorithms will go through
a standardization process [41].

– Random number generators. An important aspect for
security is the randomness: security protocols frequently re-
quire the generation of (pseudo)random numbers for different
purposes as, e.g., to create nonces during the authentication
phase, to avoid replay attacks, and to generate asymmetric
keys [42]. A random number generator is cryptographically
secure when it produces a sequence for which no algorithm can
predict in polynomial time the next bit of the sequence from
the previous bits, with a probability significantly greater than
1
2 . According to Shannon’s mathematical theory of communi-
cation, the entropy of a k-bit long (pseudo)random sequence
must be as close as possible to k.

Two types of random number generators are commonly
used for cryptographic applications: the True Random Number
Generator (TRNG) that exploits physical noise sources, and
the Pseudo Random Number Generator (PRNG) that expands
a relatively short key into a long sequence of seemingly
random bits, using a deterministic algorithm. PRNGs are
typically used in real applications and technologies. In this
case, since the adopted algorithms are usually known, the
seed of the pseudorandom generator is the only source of
randomness and, as such, it must be properly selected. A com-
mon way to generate random seeds is by exploiting different

physical phenomena, such as the timing of user processes,
or the thermal noise measured by the radio receiver [43]. For
example, a source of random seeds may be obtained by feeding
the noise signal of the radio power amplifier into the quantizer,
which will then generate a stream of (ideally) independent bits.
However, due to bandwidth restrictions, temperature bias, and
other unavoidable factors, the bitstream may show a certain
level of correlation.

Unfortunately, most of the source of randomness available
in laptops and desktop PCs are not available in low-end
embedded systems, such as the devices that will be analyzed
in the following section. For this reason, the research has
recently addressed the challenge of designing lightweight
PRNG algorithms for resource constrained devices [44] [45]
[46].

– Secure hardware. As discussed in the previous section,
IoT devices are vulnerable to edge layer attacks. Most of the
devices can be deployed in remote areas with a low level
of protection so that an illegitimate user can perform side
channel attacks. Several countermeasures have been proposed
in the literature, based on the different encryption schemes. It
is possible to exploit both hardware and software solutions to
eliminate or, at least, randomize the signals footprint exploited
by this type of attacks.

For example, Physically Unclonable Functions (PUFs) can
be adopted to improve hardware security [47]. The basic
concept of PUF is to exploit little differences introduced by the
fabrication process of the chip to generate a unique signature
of each device. A PUF circuit provides a response to a given
input challenge and, due to the intrinsic hardware differences,
the responses are chip specific. As an example, an Arbiter PUF
circuit is composed of two supposedly identical paths: for each
input, the output depends on the fastest path [48]. Majzoobi
et al. proposed the lightweight secure PUFs concept, in which
the response generation is resistant against reverse engineering
attacks that try to emulate the PUF by parametrically modeling
its behavior [49].

PUFs can be categorized into strong and weak [50]. If a
PUF can support a number of challenge-response pairs that
are exponential in the number of challenge bits, it is called
strong PUF. Strong PUFs are typically used for authentication
protocols that require new pairs for each operation. Arbiter
PUF belongs to this category. On the other hand, weak PUFs
can support a small number of challenge-response pairs and
they are used for cryptographic key generation, avoiding the
need to store secure keys on the devices. An example of weak
PUF is the ring-oscillator described in [51].

Other hardware solutions to prevent side channel analysis
attacks can be found in the literature: a hardware implemen-
tation of the SIMON algorithm is presented in [21], while a
method to randomize the instruction execution cycles is shown
in [52]. A software countermeasure is reported in [53] based
on the randomization of a parameter used in RSA signature.

Anyway, all these techniques have some drawbacks, as the
increase of power consumption of the device and the increase
of the chip area. Because of the resource constraints of the IoT
edge devices, it could be very hard to find effective solutions.
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– Intrusion detection systems. As discussed above, different
security mechanisms have been proposed to protect the de-
vices against threats at the different layers. However, besides
preventing the attacks, it is also fundamental to be able to
detect ongoing attacks. Complex anti-virus software and traffic
analyzers cannot be used in IoT devices, due to resource and
energy constraints. For this, lightweight intrusion detection
methods have been presented in the last years [54]. For exam-
ple, anomalies in system parameters, like CPU usage, memory
consumption, and network throughput, may be indicative of an
ongoing attack [55]. A similar approach is proposed in [56]:
the energy profile is analyzed to detect anomalies in power
consumption, which are linked to different types of attacks.
In [57] the signatures of various attacks are derived from
relevant features like packet dropping/send rate and signal
strength intensity. Comparing the traffic pattern with these
signatures, the attacks can be detected with good probability.
Machine learning can also be exploited for intrusion detection
purposes. In [58], for example, a random forest classification
algorithm is used to group the traffic flows into different
categories, based on some selected features. An attack is
detected when some flows exhibit non-standard patterns and
are hence classified as anomalous.

IV. SECURITY OF POPULAR IOT COMMUNICATION
TECHNOLOGIES

As discussed in the previous sections, most of the legacy
security protocols used in the standard Internet cannot be
plainly applied to the IoT scenario, because of the constraints
of many IoT devices in terms of computational, power, and
communication capabilities [59]. Therefore, new mechanisms
specifically designed for the IoT scenario have been proposed
in the literature and implemented in some commercial IoT
systems.

In this section, we focus on the security mechanisms imple-
mented by some of the most popular transmission technologies
used in the IoT domain, namely ZigBee, BLE, 6LoWPAN and
LoRaWAN. Moreover, we review the security vulnerabilities
of these technologies, reporting different attack vectors found
in the literature.

Among these technologies, ZigBee, BLE and 6LoWPAN are
predominantly used for short-range communications in homes
or small offices. LoRaWAN instead is used for long-range sce-
narios, such as city-wide monitoring and control applications.
From a protocol stack perspective, while ZigBee and BLE are
full-stack technologies, 6LoWPAN and LoRaWAN cover only
some layers of the stack, and therefore can be potentially used
in the most diverse applications.

A. ZigBee

– Description. ZigBee [60] is a two-way, wireless commu-
nication standard developed by the ZigBee Alliance. Thanks
to its low cost and low power consumption, ZigBee is one
of the most used technology to connect IoT devices. As
shown in Fig. 3, the standard specifies the application and
network layers, while the link and physical layers are taken
from the IEEE 802.15.4 standard [61]. In more detail, the

ZigBee Application

Support protocol

ZigBee Network protocol

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Application

Transport

Data link

Physical

IoT Protocol Stack with ZigBee

ZigBee Device

Object protocol

Figure 3. ZigBee protocol stack. The technical specifications for ZigBee can
be found in [60].

Coordinator

RouterRouter

Router

End-dev. End-dev.

End-dev.End-dev.

End-dev. End-dev.

End-dev.

Figure 4. ZigBee mesh topology.

Application Layer (APL) provides the data transmission and
security services, and permits to bind the devices to two or
more application entities located on the same network. The
Network Layer (NWK) provides functionalities such as rout-
ing, security, and configuration of new devices. The NWK also
manages the establishment of new connections, the joining and
leaving procedures, and the addressing and neighbor discovery
services.

ZigBee includes different application profiles that define
message formats and functional procedures to guarantee ven-
dors interoperability [60].

Communications, secrecy, and authentication services are
provided by message encryption and authentication, using
AES in the counter with cipher block chaining message
authentication code (CCM) mode. Integrity protection is en-
sured by a 128 bit Message Integrity Code (MIC) and replay
protection is based on a 4 Byte frame counter.

Each ZigBee network includes a Trust Center, i.e., a device
trusted by all the other nodes in the network. The Trust
Center usually corresponds to the network coordinator and is
responsible for (i) authenticating the devices that require to
join the network, (ii) deciding whether to accept or deny the
join request, (iii) maintaining and distributing network keys,
(iv) enabling end-to-end security between devices.

The ZigBee network can either have a star topology, where
the end-devices are directly connected to the coordinator, or a
tree topology, when the interconnection is performed by inter-
mediate routers. By interconnecting the routers, furthermore,
it is possible to realize a mesh topology, as shown in Fig. 4.

The cryptographic routines used in ZigBee employ two
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128 bit keys: the link key and the network key. The link key is
used to secure unicast communications between APL entities.
Each unicast communication uses a different link key, which
is disclosed to the two linked entities only. The network key
is needed for broadcast communications: it is shared among
all the devices in the same network.

There are different ways for a device to acquire the required
link or network key [62]:

• Pre-installation. The link or network key is installed in
the device during the manufacturing process.

• Key transport. The link or network key is generated
elsewhere (usually by the Trust Center) and then commu-
nicated to the device. The standard suggests to load the
key using an out-of-band technique, however it includes
the possibility to send the key in-band. In the latter case,
the key may be sent in clear text or encrypted using a
pre-shared key specific for each application profile. For
example, for Home Automation devices, the pre-shared
key is defined in the ZigBee standard and is publicly
available. For ZigBee Light Link (ZLL) devices, instead,
the pre-shared key “will be distributed only to certified
manufacturers and is bound with a safekeeping contract”,
according to the ZLL specification [63]. However, it has
been leaked on the Internet in 2015, so it is now publicly
known [62], [64].

• Key establishment. Through this process, a link key Li

is shared between the Trust Center and another device
in the network for securing the communications between
them. The procedure starts with the exchange of a trusted
information, the master key, pre-installed during the man-
ufacturing process. The master key is provided by the
ZigBee Alliance to its members and is different for each
application profile. After this phase, the device and the
trust center exchange ephemeral data that are used to
derive Li. When two devices i and j need to communicate
with each other, the Trust Center provides them with
a link key Li,j , encrypted using the link keys Li and
Lj , respectively. Note that this method cannot be used to
generate network keys.

The process through which a new ZigBee network is set
up or a new ZigBee device is added to an existing network is
called commissioning. In addition to the commissioning proce-
dures specific of the different application profiles, the ZigBee
standard also specifies a common procedure that makes it
possible to interconnect devices with different profiles.

– Attack surface. A possible attack vector in ZigBee network
consists in discovering the keys used to secure the communi-
cations. For example, the repeated encryption of known and
fixed messages (e.g., control messages defined in the standard)
makes the system vulnerable to plaintext attacks [62]. This
technique enables the recovery of a cryptographic key by
having access to both the encrypted and decrypted messages.
Hence, to ensure a high security level, the network key needs
to be changed periodically.

A sinkhole attack against a ZigBee network is presented
in [65]. The attack is performed through a malicious entity
that legally joins the network, but then pretends to have an

Internet

Bridge/
Gateway/
Hub

ZLL

Router

Figure 5. General architecture of a smart light system.

efficient routing path towards the coordinator in order to attract
more traffic flows. In this way, the attacker can modify or drop
incoming packets. Moreover, if the malicious entity is directly
connected to the Internet, all the ZigBee network is exposed
to Internet attacks.

The sinkhole attack, however, requires that the malicious
node is able to connect to the network and communicate with
the other nodes. The ghost attack presented in [66], instead,
does not require any knowledge of the communication keys.
Its aim is to drain the ZigBee node energy, increasing the
success probability of other DoS attacks. The strategy consists
in injecting fake messages with increasing frame counters
into the network, impersonating one legitimate node. At the
receiver side, if the fake message counter is larger than that
stored for the sending node, the counter is updated and the
message is accepted and processed. Even if the message will
be dropped during the integrity check, the node consumes
some energy for the processing. The attack will also inflate the
frame counter at the receiver, possibly creating a misalignment
with the counter at the legitimate source, whose messages may
be misinterpreted as duplicate and then disregarded.

Finally, KillerBee is a practical tool for hacking ZigBee
devices [67]. The framework makes it possible to sniff and
inject traffic in a ZigBee network as well as decode and
manipulate packets. In [68], some attacks that exploit this tool,
like replay attacks, are presented.

Other attack vectors are specific to ZLL installations. In
2012, LIFX and Philips presented their first smart lights solu-
tions and, afterwards, many other companies developed similar
connected light systems. Many vendors, such as Philips, use
the ZLL application profile. A general smart light system
architecture is presented in Fig. 5.

Based on several reports, however, many smart light systems
implement only the essential security mechanisms required
to obtain the ZigBee Alliance’s certification [64]. At a first
analysis, it may seem unnecessary to implement many security
precautions in a light system, since it does not involve the
transmission of confidential information, and can still be
operated manually in case the network does not work properly.
However, as explained above, attackers may use these devices
to relay an attack to the rest of the home or corporate network,
bringing more critical devices at risk.

In [64], the authors investigate the security level in three
different ZigBee smart light systems, namely Osram Lightify,
GE Link and Philips Hue. The study evaluates vulnerabilities
of both bulbs and interconnected devices, and reports seven
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different types of attack. The attacks are based on the inter-
PAN frames, which are used to transmit touchlink commission-
ing commands such as scan request and scan response. These
frames are neither secured nor authenticated: a malicious
entity can send the same commands pretending to belong
to the network. The attacker can then do illicit operations,
compromising the security of the network, as better explained
next.

• Active device scan. The scan searches for ZLL devices
in the range of the attacker, sending scan requests on
different channels. By listening to the corresponding scan
responses, the attacker can obtain a complete overview of
the devices connected to the network. The three analyzed
systems exhibit different behaviors: (i) all light bulbs and
controller from Lightify respond to the attacker’s scan
request; (ii) the GE Link controller does not respond;
and (iii) the Hue controller responds only if its Touchlink
commissioning button has been pushed within the last 30
seconds.

• Blink attack. This attack can be activated after a device
scan by sending to the victim device the inter-PAN
command identify request. In this way, the device starts to
blink for a default period. The identify request command
is implemented in all the three lightbulb systems to allow
the user to visually identify which device has a certain
network address. As a consequence, all the systems are
vulnerable to the blink attack.

• Reset attack. The attacker performs a device scan and
then resets them all to the factory state by sending the
inter-PAN command reset to factory new request. All
devices of the three lightbulb systems are vulnerable to
this attack.

• DoS attack and hijack attack. In these attacks, the end
user loses control of the victim device. Two strategies can
be adopted for DoS attacks. The first consists of forcing
the device to change the transmission channel, sending
a network update request inter-PAN command including
the new channel. As a second option, the attacker can
cause the device to join a non existing network, changing
its network key with arbitrary bytes. This is possible by
sending the inter-PAN command network join end-device
request: at the reception of the command, the device
leaves its current network, changing its parameters ac-
cording to the new configuration. The hijack attack works
similarly to this second approach, with the difference that
it forces the device to join an existing network chosen by
the attacker. In this case, the network key of the desired
network is used. All the evaluated smart light systems
are vulnerable to DoS and hijack attacks. However, all
of them integrate user functions to re-obtain control over
the attacked devices.

• Network key extraction attack. This attack makes it possi-
ble to find the current network key by eavesdropping the
messages exchanged by the devices during the touchlink
commissioning procedure. A preliminary DoS attack is
needed to disconnect the device from the network. Af-
ter that, the victim device will start a commissioning

Master

Slave

SlaveSlave

Slave Slave

Figure 6. BLE star topology: each slave is associated with a single master.

procedure in order to regain access to the network.
Therefore, the attacker can extract the network key from
the network join end-device request. In fact, as mentioned,
the network key is encrypted using the well known master
key. Only Philips Hue devices are vulnerable to this
attack since the touchlink commissioning procedure is
not enabled in the other devices.

• Inject commands attack. This attack makes it possible to
send commands to the devices in order to control their
actions. The knowledge of the current network key is
needed (e.g., via the execution of the previous attacks).
All the analyzed smart light systems are vulnerable to
this attack.

B. Bluetooth Low Energy

– Description. Bluetooth is a widely used short range wireless
communication protocol. Its low energy and IoT-tailored ver-
sion, named Bluetooth Low Energy (BLE), has been first in-
troduced in the Bluetooth Core Specification version 4.0 [69].

A BLE network is composed of two types of devices:
masters and slaves. The masters act as initiators during the
communication setup and the slaves associate to them [70].
The entities are connected in a star topology, where each slave
is associated with a single master, as exemplified in Fig. 6.

BLE operates in the unlicensed 2.4 GHz ISM band and
uses 40 channels with a 2 MHz spacing [70]. The physical
layer data rate is 1 Mbps and the coverage range is typically
over various tens of meters. The BLE MAC layer is split
into two parts, advertising and data communication: 37 of the
available channels are used during the transmission of data and
the remaining 3 are used by unconnected entities to broadcast
device information and establish connections [71].

In the data communication phase, data is normally sent in
bursts to save energy. In this way, slaves can remain in sleep
mode for long periods, waking up periodically to listen to the
channel for possible messages from the master. The master
decides the rendez-vous instants with the slaves, according
to a Time Division Multiple Access (TDMA) scheme. Com-
munication reliability is provided through a Stop and Wait
(S&W) automatic packet retransmission mechanism, based on
cumulative acknowledgments.

As depicted in Fig. 7, besides physical and MAC layers,
the stack entails other protocols such as the Logical Link
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Figure 7. BLE protocol stack. The technical specifications for BLE can be
found in [69].

Control and Adaptation Protocol (L2CAP), and the Low
Energy Attribute Protocol (ATT).

BLE encryption and authentication processes are based on
AES-CCM with 128 bit keys, as for ZigBee. The symmetric
key for a master–slave link is generated during the pairing
procedure, which is executed as follows:

1) The devices exchange their authentication capabilities and
requirements. This phase is completely unencrypted.

2) The devices generate or exchange a Temporary Key (TK)
using one of the available pairing methods. Then they
exchange some values to confirm that the TK is the same
for both devices. After that, a Short Term Key (STK) is
generated from the TK. The STK will be used to encrypt
the data stream.

Finally, a bonding phase may optionally follow the pairing
procedure: in this, the devices exchange and store common
link keys (i.e., bonds) that can be re-used when a link between
the two devices is re-established at a later time.

The available pairing methods are the following three.

• Just Works: the TK is set to 0. Of course, this does not
provide any level of security.

• Out of Band: the TK is exchanged out-of-band, e.g.,
using near field communication. This method provides
a security level that is as high as that of the out-of-band
method used to exchange the key. However, it can be
inconvenient for the user.

• Passkey: the TK is a six digit number that the user passes
between the devices. For example, one of the devices
generates the number and show it on a display: the user
must then input the same number to the other device. In
this case, the security level is high, but the devices need
to be equipped with user’s interfaces that make it possible
to read and type-in the TK, which may be impractical for
miniaturized IoT devices.

Starting from BLE version 4.2, a new pairing procedure has
been put in place, using elliptic curve cryptography:

1) Each device generates an Elliptic Curve Diffie Hell-
man (ECDH) public-private key pair. Then, they ex-
change the public key with each other and derive a key,
called DHKey, from their own secret key and the public
key of the other device, using elliptic curve functions.

2) The devices use one of the available pairing methods (see
below) to confirm that DHKey is the same for both of

them and to generate a Long Term Key (LTK) that will
be used to symmetrically encrypt the data stream.

3) Optionally, the devices can perform a final step, like that
for BLE version 4.1.

The pairing methods have also been updated, with the intro-
duction of a new option and the hardening of the methods in
the previous version.

• Just Works: the non-initiating device generates a nonce
and a confirmation value Cb, function of the nonce and
the public keys of the two devices. The Cb and the
nonce are then sent to the initiating device. The latter
generates its own nonce and sends it to the non-initiating
device. It also uses the non-initiating devices nonce and
the public keys to check whether the received code Cb is
valid. Clearly, this does not provide any security, since an
attacker may generate its own nonce and use the public
keys to create a valid confirmation value.

• Numeric Comparison: this method is as Just Works, but
the devices also generate a value which is function of the
public keys and the nonces. This value must be displayed
to the user, which must manually confirm that the shown
number is the same in both devices. This last step solves
the issue with the previous method.

• Out of Band: with this method, random numbers and
commitment values, which are functions of the random
numbers and public keys, are exchanged in an out-of-
band fashion, e.g., using near field communication. Using
this method, the security level achieved is equal to the
integrity and secrecy of the out-of-band method of choice.

• Passkey: in this method, the user first inputs a k bit long
secret passkey to both devices (or reads it from one of
the devices and inputs it to the other). Then, for each bit
i = 1, . . . , k of the passkey, the devices must perform
a two-step procedure: (i) Each device generates a nonce
and computes a commitment value, which is function of
the nonce, the passkey, and the public keys. Commitments
and nonces are then exchanged between devices. (ii) After
that, each device recalculates the commitments as before,
but exchanging the order of the two public keys, and using
the nonce of the other device. If the passkey is the same,
the commitment value must be equal to that found before.

The use of elliptic curve cryptography, however, is not with-
out drawbacks: based on the experimental results presented in
[72], the energy consumed to perform a single ECDH-ECDSA
key exchange is more than 6000 times larger than that required
by symmetric encryption techniques (236 mJ vs. 38 µJ).

– Attack surface. The pairing methods just described have
some important security issues. In BLE 4.0 and 4.1, there is
no protection to eavesdropping and man-in-the-middle attacks
during the pairing phase, except for the Out of Band pairing. In
fact, in the Just Works pairing method the key is known, while
in the Passkey method the key is easily brute-forced. In some
cases, brute-force is not even required [73]–[77]. BLE 4.2
is affected by similar problems, principally for the Passkey
pairing, since the passkey is verified one bit at a time [77],
[78]. When the attacker is interested in eavesdropping, it can
try to match the confirmation value considering the current
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Figure 8. Data rate [bps] vs. time - Resting user [71].

Figure 9. Data rate [bps] vs. time - Running user [71].

bit ri of the key equal to 0. If the confirmation value does
not match, then ri = 1. When trying to directly connect to a
device, instead, the attacker can consider ri = 0. If the other
device aborts the procedure, then ri = 1. This procedure can
be repeated for bit i = 1, . . . , k, learning, therefore, the entire
key.

Another issue is linked to the advertise mode of BLE de-
vices. In [71], authors found that the analyzed fitness trackers
are almost always in advertise mode. This is because the
master device frequently disconnects from the tracker in order
to preserve energy. Therefore, when the smartphone applica-
tion for the fitness tracker is not running, the tracker closes
its communication link, remaining in advertise mode until
the next connection establishment. Also, most of the devices
analyzed in [71] always expose the same MAC address. This
makes it possible to capture exchanged messages and correlate
over a long period of time the BLE traffic between a pair of
devices. As an example, an attacker may be able to track the
movements of the BLE device owner or even just verify its
presence in an area. Furthermore, this attack may be used to
track the user’s activity: in fact, even though the packets are
encrypted, the volume of data exchanged is a clear indicator of
user’s motions, as exemplified in Fig. 8 and Fig. 9. The figures
show the difference between the BLE data traffic exchanged
by a tracker and a smartphone for a resting and a running
user. As a security feature, the BLE specifications allow a
device to use random MAC addresses and to frequently change
them. For example, the Apple Watch randomizes the MAC
address both when it is rebooted and during normal usage at
an approximately 10 minutes interval [79].

In [80], the authors describe another type of attack that
could be conducted against wearable fitness devices. This
is based on firmware hacking, which is possible only if
the attacker has physical access to the device. The device
considered, a Nike+ Fuelband, contains a standard USB con-

nector used for charging and synchronizing with the computer.
This connector is also used by the manufacturer to write the
firmware into the device memory. Using the same USB port,
it is possible to send commands to the STM32 microcontroller
in the device, enabling unrestricted read and write operations
into the memory. Therefore, it is possible to flash a tampered
firmware version and disable all protection mechanisms. The
possible consequences of a firmware attack like this could
range from the possibility of a back-door injection, in order
to leak user information or credentials, to the installation of
rogue services allowing for full remote control of the device
by the attacker.

Furthermore, the analysis in [79] shows that, in most cases,
fitness tracking applications transmit every logged event over
the Internet, and in some cases, it is even unclear why such
transmissions are occurring. This allows an attacker to perform
data analysis on the amount of exchanged data. On top of that,
the authors found that Garmin devices do not use an encrypted
protocol to transmit data between the mobile device and the
Garmin servers, except during the account creation phase.
By exploiting this vulnerability, a man-in-the-middle attack is
able to capture email addresses and session identifiers, which
are transmitted in clear-text. A similar result is presented in
[81], using FitBit devices: in this case, login credentials are
forwarded in clear-text in an HTTP POST request.

At DEF CON 2016, researchers presented several security
vulnerabilities of a large number of door lock and padlock
devices that use BLE to communicate with the user’s smart-
phone [82], [83]. They found that the passwords of devices
like Quicklock Door lock, Quicklock Padlock, and iBluLock
Padlock are transmitted in clear text and hence can be easily
eavesdropped. Other devices use passwords composed by a
small number of characters, making brute force attacks feasi-
ble. The Ceomate Bluetooth Smart Door lock and other devices
are vulnerable to replay attacks due to the bad implementation
of the encryption mechanisms. The Okidokey Smart Door lock
can be opened by just changing the value of one byte that
brings the door lock in an error state, forcing it to open.
The Mesh Motion Bitlock Padlock is vulnerable to man-in-
the-middle attack: the attacker is able to impersonate the lock
to steal the password sent by the user’s smartphone. The
vulnerabilities of the August door lock are investigated in [84]
and [85]. However, August seems to be very proactive to fix
the discovered issues: when in 2015 the hard-coded encryption
key was revealed, the code was patched in 24 hours [86].

Finally, as for ZigBee, attack softwares can also be found
for BLE. For example, GATTack enables to break different
aspects of the BLE security [87].

C. 6LoWPAN and CoAP

– Description. 6LoWPAN and CoAP are two IETF proto-
cols that can be implemented in IoT devices to ease their
interaction with standard IP-based systems. As illustrated in
Fig. 10, 6LowPAN is an IPv6 adaptation protocol for resource-
constrained devices that communicate over low power and
lossy links, such as IEEE 802.15.4 [88], [89]. 6LowPAN
makes use of compression and fragmentation mechanisms to
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reduce the size of the IP datagrams and remove most of
redundant fields. CoAP, instead, is a RESTful protocol at
the application layer, laying on top of the UDP transport
protocol. It has been designed to be easily mapped into HTTP
via proxies, to support retransmissions, sleepy devices, and
resource discovery. The use of UDP makes it possible to
avoid the support of the rather sophisticated connection-control
mechanisms of TCP, but on the other hand requires to account
for out-of-order message delivery and loss packets.

A the PHY and MAC layers, networks employing 6Low-
PNA and CoAP typically relay on protocols from the IEEE
802.15.4 family. Instead, the routing within the IoT network
is usually based on the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL), defined in RFC 6550 [90]. RPL
has been mainly designed for multi-point to point communi-
cations, such as those in wireless sensor networks. However, it
also supports point to multi-point (sink broadcast) and point-
to-point (leaf nodes communicating with each other). RPL
builds a Directed Acyclic Graph (DAG) based on a root node
called Low power and lossy Border Router (LBR), usually
being the device responsible for the management of a group
of nodes and representing the border between two networks.
From the DAG, RPL creates a Destination Oriented Direct
Acyclic Graph (DODAG) tree, exemplified in Fig. 11. The
DODAG contains only one root and is loop free. Starting from
the DODAG root, devices broadcast their DODAG Information

Objective (DIO) message, which contains device and link
metrics. The global repair and local repair mechanisms are
used in case of a broken link: the first recalculates the whole
topology, while the second operates locally, by informing all
the children of a node that they need to update their parent.

– Attack surface. A hypothetical attacker can target the RPL
or operate at the adaptation layer, based on the level of control
over the network that it wants to achieve.

Attacks against RPL: Many of the attacks on 6LoWPAN
focus on redirecting traffic and disrupting the routing tree. In
the following we report some examples of such attacks [91]–
[93].

• Clone ID and sibyl attacks. In the clone ID attack, the
malicious node clones the identity of another node. In
the sibyl attack, the attacker uses the identity of several
entities at the same time. In this way, the malicious entity
can access and redirect a large amount of network traffic.
These types of attack can be detected by keeping track of
the number of instances of each identity or by monitoring
the geographical location of the devices.

• Sinkhole attack. This is the same type of attack described
for ZigBee: the malicious node declares to the sink very
efficient routing paths towards the other nodes, gaining
control over a large part of the traffic flows.

• Selective forwarding and black hole attacks. These at-
tacks take place when a node of the network, that is
supposed to forward the packets along the correct routing
path, discards some of the traffic (selective forwarding),
or all the traffic (black hole), that passes through it.
Possible solutions may be the creation of disjoint or
dynamic paths inside the DAG.

• Hello flooding attack. The Hello message is used by a
node in a 6LoWPAN network to announce its presence.
If a node receives a Hello message, it assumes that the
sender node is in its neighborhood, and can thus be di-
rectly reachable. An attacker can exploit this mechanism
by broadcasting Hello messages using a transmission
power larger than that permitted. In this way, a substantial
number of nodes consider the attacker as a neighbor.
However, when one of them tries to use the new link, the
sent packets will be lost, since the legacy transmit power
level is not sufficient to guarantee good communication.
This type of attack can be avoided using link layer
acknowledgments to check the message reception.

Contrary to the previous ones, the following attacks relies on
the exploitation of the RPL service messages [91]–[93].

• Local repair attack. The malicious node continuously
sends local repair messages. This forces repeated updates
of the network topology, even if there is no connectiv-
ity problem. These operations are costly both in terms
of computational resources and energy, causing service
degradation and early energy depletion for battery oper-
ated devices.

• Version number attack. The version number is a field
of DIO messages that is incremented at each rebuilding
of the DODAG. The malicious transmission of DIO
messages with a higher version number may force the
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whole DODAG to be unnecessarily rebuilt. Again, this
causes service degradation and energy depletion.
Attacks from the Internet side: Neither 6LoWPAN nor

CoAP provide secrecy, authentication, or integrity protection.
Therefore, the use of 6LoWPAN and CoAP without additional
security measures makes the devices fully accessible from
the Internet. A proposal has been made to extend CoAP in
order to provide built-in security, but it has not yet been
included in the standard [94]. The CoAP specifications, in-
stead, suggest the use of Datagram TLS (DTLS) to provide
secrecy, authentication, and integrity protection [35], [95].
Alternatively, IPsec [96] can be used to provide authentication
and encryption at the IP level.

If no encryption and authentication mechanisms are used,
an attacker could easily gain access to the IoT network and
eavesdrop sensitive information from the data flow. Addition-
ally, the attacker may gain the control of the sensor nodes, e.g.,
to create a bot-net [97]. As an example, in [98] the authors
present a modification of the Nest thermostat firmware to use
it as part of a bot-net. The bot-nets may then be used to
launch DoS attacks to other targets. This kind of attack can be
detected through an analysis of the node traffic: in fact, nodes
in a bot-net usually transmit more data than clean devices, in
order to maintain the bot-net.

Attacks at the Adaptation Layer: The forwarding of pack-
ets between the public Internet and the 6LoWPAN network is
implemented at the border router. The lack of authentication
and the limited computational resources of the devices that
perform the adaptation make this mechanism vulnerable to
attacks. Two attacks that can be performed at this level,
fragment duplication and buffer reservation, are presented in
[99]. The fragment duplication attack relies on the fact that
a node cannot verify at the 6LoWPAN layer if a received
fragment belongs to the same IPv6 packet of the previous ones,
since this control is performed at higher layers. If a malicious
node injects fragments with the same header of the legitimate
6LoWPAN packet, the target node cannot distinguish between
them and the legitimate ones. Therefore, it cannot decide
which fragments have to be used during packet reassembly
procedure. This causes the reconstruction of a corrupted IPv6
packet, which is consequently dropped.

The buffer reservation attack leverages the limited memory
of the network nodes. In the 6LoWPAN network, receiving
nodes must reserve buffer space to reassemble the fragments
that belong to the same IPv6 packet. When the reassembly
buffer is assigned to one IPv6 packet, received fragments of
other IPv6 packets are dropped. Since buffer space reservation
is kept for 60 seconds, if an arbitrary fragment is transmitted
by the attacker to the target node, the latter will not be able
to receive further fragmented packets in the following minute.
Consecutive repetitions of this attack cause a long term DoS
to the targeted device, while employing just a small amount
of the malicious node resources.

In order to protect 6LoWPAN networks from the attackers,
intrusion detection systems specifically tailored to IoT net-
works have been studied [91]–[93]. An intrusion detection
system monitors the network parameters and can identify
signs of intrusions or attacks. Intrusion detection systems for
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Figure 12. LoRaWAN star-of-star topology.

6LoWPAN networks are optimized to save the largest amount
of network resources. Due to the vast attack surface, intrusion
detection systems should operate both at the adaptation, RPL,
and application layers. Therefore, a hybrid architecture is
needed, in which a centralized module, installed on the border
router, cooperate with distributed modules installed on internal
nodes.

D. LoRaWAN

– Description. LoRaWAN, introduced in 2015 by the LoRa
Alliance [100], is a link layer protocol that sits on top of the
LoRa physical layer. As for the previous protocols, LoRaWAN
is optimized for battery-powered end-devices. LoRaWAN has
a star-of-stars topology that includes end-devices, gateways,
and network server, as exemplified in Fig. 12.

In a LoRaWAN network, the end-devices communicate
via single-hop links to one or more gateways, which are
themselves connected to a single network server via legacy
IP technologies. LoRa communication uses channels in the
868/900 MHz ISM band. The data rate ranges from 0.3 kbps
to 50 kbps with a communication range of many kilometers.
The communication is bidirectional and is always initiated by
the end-device. After each uplink transmission, the end-device
opens two downlink windows in different sub-bands to receive
data from the network server. The protocol used to access the
channel is ALOHA [101], [102].

LoRa end-devices can belong to three different classes,
namely A, B, and C, which are associated to different
operation modes. The operation mode of class A, described
above, has to be implemented by all LoRaWAN devices. Class
B and C, instead, offers some additional features. Class B
devices can open extra receive windows at scheduled times to
enable the reception of unsolicited messages from the network
server. Class C devices, instead, are expected to be connected
to the power grid and, then, can keep the receive window
always open.

The commissioning procedure by which a device can join
a LoRaWAN network is named Over The Air Activation
(OTAA). This procedure leverages on some information stored
on the device: the End-device Identifier (DevEUI), the Appli-
cation Identifier (AppEUI) and the Application Key (AppKey).
The first two are unique global identifiers for the end-device
and the application provider, respectively. Instead, the Appli-
cation Key is an AES-128 key assigned by the application
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Figure 13. Protocol stacks of LoRaWAN end-devices, gateway, and network
server. The document in [100] provides the specifications for LoRaWAN.

owner and is specific to the end-device. The uniqueness of
the key is needed to ensure security: if the key is shared
between devices, traffic eavesdropping becomes possible. The
join procedure is initiated by the end-device by sending a join
request, including the DevEUI and AppEUI. If the device is
allowed to join the network, the network server replies with
a join accept message. The message includes the Network
Identifier (NetID), the Application Nonce (AppNonce) and the
End-device Address (DevAddr). The NetID and DevAddr are
32 bits long: the first uniquely identifies the network, while
the second identifies the end-device within the network. The
AppNonce is used by the end-device to derive the Network
Session Key (NwkSKey) and the Application Session Key
(AppSKey), which are specific for each end-device. The latter
and the network server use the session keys to encrypt and
decrypt the payload of the messages. Specifically, NwkSKey
is used for MAC commands, while AppSKey is employed
for application specific messages. These keys are also used
to verify the Message Integrity Code (MIC), to guarantee
data integrity. In fact, the MIC is a 4 bytes tag, obtained by
encrypting the message with NwkSKey using AES-128.

Once the end-device has joined the LoRaWAN network,
all future messages are encrypted using a combination of
NwkSKey and AppSKey. The payload encryption is performed
using AES-128, and is based on the following procedure. First,
a number of 16-byte information blocks {Ai}, are created.
Each block contains the end-device address, two frame coun-
ters, and a byte indicating the stream direction. Each block
Ai is then encrypted to obtain the corresponding Si block
using the NwkSkey, if the payload to be encrypted consists
only in MAC management commands, and the AppSKey
otherwise. The payload is finally encrypted by the XOR
operation between the message itself and the sequence of
blocks Si [100].

– Attack surface. The first weakness of the LoRaWAN pro-
tocol is related to key management [103]. AppKey, NwkSKey,
and AppSKey are all stored in the end-devices. Therefore,
using a side channel analysis attack it can be possible to
recover the keys exploiting the variations in power consump-
tion or electromagnetic emissions from the transceiver during
the encryption. This is eased by the fact that LoRaWAN
devices are expected to work in an unattended fashion and
in remote locations, and hence surreptitious physical access to
the device is possible. NwkSKeys and AppSKeys are stored
also in the network server that generated them. Violation of
the network server by other means, e.g., by attacking a non

secure service running on the same computer, may give access
to the LoRaWAN network and applications.

Furthermore, because of the way the protocol is designed,
nodes must share the same NwkSKey and AppSKey if they
need to support multicast messages. In this case, discovering
the keys from just one node will give access to all the
other communications. To overcome this problem, the nodes
need to be able to differentiate between multicast and unicast
communications. In the first case, they should use the common
key, while the unique NwkSKeys and AppSKeys should be
preferred for unicast communications. In this way, if the
attacker corrupts the multicast key, only multicast messages
would be insecure.

An attacker may also focus on the link between the gateway
and the network server. Even if, in principle, any legacy
IP protocol can be used for such a connection, in practice
many deployments relay on the protocol provided by Semtech,
which is based on plain unprotected UDP. Therefore, while the
LoRaWAN packets payload is encrypted, still it is possible to
disrupt the network services by forging or modifying network
management packets.

Class B networks introduce additional threats because of
beacons and multicast messages [103]. Beacon messages are
not encrypted: they represent a source of information about
the network and provide a way to inject malicious data into
it. In fact, beacons can also be generated by an attacker,
and, since a node cannot distinguish between malicious and
genuine beacon messages, the network operations could be
easily disrupted.

V. EXAMPLES OF IMPLEMENTATIONS IN COMMERCIAL
DEVICES

In general, IoT devices include at least two microcontrollers:
one responsible for the management and processing of the data
and the other for connectivity. In the following of this section
we investigate the characteristics of the processors in charge
of the connectivity aspects, with a particular focus on their
security features.

Most of the considered devices use ARM microcontrollers
of the Cortex-M series. Especially, the M0, M0+, and M23
microcontrollers are designed for applications that require
minimal costs, power, and size. Because of these character-
istics, they are the most adopted in embedded applications.
Instead, the M3 and M4 models offer a balance between
performance and energy efficiency. Lastly, the M7 is the most
powerful controller, designed for high performance embedded
applications [104]. Fig. 14 reports the relative performance of
different Cortex M designs with respect to the Cortex M0.
Differently from the more powerful Cortex-A and Cortex-
R processors, the Cortex-M series is provided only with a
Memory Protection Unit, which is a trimmed down version
of the Memory Management Unit: it only provides memory
protection, instead of providing full virtual memory manage-
ment. Also, the Cortex-M microcontrollers are equipped with
less RAM and flash memory with respect to microcontrollers
from the other two classes [42].

Microcontrollers from the Cortex-M family do not integrate
any hardware pseudorandom number generator, nor any mod-
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Figure 14. Arm Cortex-M series [105].

ule supporting cryptographic algorithms such as AES. There-
fore, support for cryptographic algorithms is implemented via
software or by dedicated co-processors, which is the most
common solution in commercial devices.

For what concerns software cryptographic routines, perfor-
mance could wildly vary between different microcontrollers,
even within the same family. In this regard, Tschofenig and
Pegourie-Gonnard from ARM have collected performance
figures of different cryptographic algorithms implemented in
software in the M0/M0+ and M3/M4 microprocessors [42],
[106]. The algorithms taken into account are ECC, SHA,
and AES. Tests were performed on two different develop-
ment boards: the NXP LPC1768 and the Freescale FRDM-
KL25Z. The former embeds an ARM Cortex-M3 CPU at
96 MHz, 512 KB flash memory and 32 KB RAM. The
latter is controlled by an ARM Cortex-M0+ CPU at 48 MHz,
128 KB flash memory and 16 KB RAM.1 The authors exploit
different NIST secp*r1 elliptic curves used in cryptography
and show performance results using different optimization
settings. Fig. 15 reports the results for the two development
boards: in particular, the performance of different phases of
elliptic curve cryptography algorithms are compared when
using the NIST secp256r1 curve. Both CPU speed and RAM
usage have a significant impact on performance. Therefore, it
is crucial to reach the optimal trade-off between RAM usage
and performance. Tschofenig and Pegourie-Gonnard state that,
usually, the increased performance is worth the additional
RAM usage.

A. ZigBee implementations

As introduced in Sec. IV-A, different smart light systems
adopt the ZigBee protocol. The Philips HUE system is one of
them and presents multiple hardware implementations (Tab. I).
Most of the light bulbs available on the market embed the wire-
less module ATMEL SAMR21, which has two components:

1The considered boards have no hardware pseudorandom number generator,
which means that the low entropy of the generated numbers would not
be suitable for real world deployments. This, however, does not affect the
speed of the considered cryptographic functions, therefore the results are still
significant.
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Figure 15. Performance comparison of elliptic curve cryptography using the
NIST secp256r1 curve in different microcontrollers [106].

the ATMEL SAMD21 core (based on the ARM Cortex M0+
architecture) and the AT86RF233 radio transceiver, which
supports both ZigBee and 6LoWPAN protocols. The ARM
Cortex M0+ microcontroller does not implement any hardware
cryptographic routine, since it lacks a hardware pseudorandom
number generator. To overcome this problem, the AT86RF233
incorporates a two-bit random generator where the source of
randomness is given by the noise observations [107], [108].
The generated random number can be used both for the
creation of a random seed for the AES key generation. In
addition, a dedicated hardware module is included to perform
the AES-128 encryption procedure. To use this module, a 128-
bit non modifiable initial key needs to be pre-installed in the
device. The source of entropy is updated every 1 µs. Other
Philips HUE products (e.g., the Philips Go) embed a different
8-bit microcontroller, the ATMEL M2564RFR2, which still
uses the just described mechanism as the entropy source.
The HUE Bridge, another product in the Philips HUE line,
embeds the Texas Instruments CC2530 microcontroller, which
integrates an Intel 8051 microprocessor and a co-processor for
AES encryption and decryption. Pseudorandom numbers are
generated using a 16-bit Linear Feedback Shift Register, which
can be seeded with random data from the noise in the radio
Analogue-to-Digital-Converter [109].

The Nest Protect smoke alarm and the Nest thermostat
also use ZigBee for communications. They adopt the EM357
System-on-a-Chip (SoC) from Silicon Labs, which is based
on the 32-bit ARM Cortex-M3 and includes an IEEE 802.15.4
radio transceiver [110]. The SoC is provided with additional
hardware to perform AES encryption: the AES CCM, CBC-
MAC and CTR modes are implemented in hardware. The 16-
bit seed is generated from the analog circuitry thermal noise.

B. BLE implementations

As mentioned in Sec. IV-B, most of the considered fit-
ness bands embed microprocessors from the ARM Cortex M
family. For what concerns the BLE connectivity module, as
shown in Tab. II, both the popular FitBit Flex 2 and FitBit
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Table I
SOME ZLL PRODUCTS

Product Transceiver (Radio) MCU

Philips HUE AT86RF233 SAMD21
Philips Go M2564RFR2
HUE Bridge CC2530
Nest Protect EM357
Nest thermostat EM357

Table II
SOME BLE PRODUCTS

Product Transceiver (Radio) MCU

FitBit Flex 2 nRF8001 CC2540
Fitbit Charge HR nRF8001 CC2540
Fitbit Charge 2 BlueNRG
Nike+ Fuelband CC2564B MSP430F5
Nike+ Fuelband SE CSR1010A

Charge HR use the nRF8001 by Nordic semiconductor for the
BLE connectivity [111]. The latter works together with the
Texas Instruments CC2540 microcontroller, which provides
an AES Security co-processor for encryption and decryption
purposes [112]. A different design choice has been taken for
the newer FitBit Charge 2, which uses the BlueNRG SoC by
STMicroelectronics. This SoC includes an ARM Cortex M0
microcontroller, which embeds an AES security co-processor,
and a separate Bluetooth module [113].

The Nike+ Fuelband uses two different modules: the
CC2564B BLE radio interface and the 16-bit MSP430F5
MCU, both from Texas Instruments [114]. The first of these
modules has a 128-bit hardware encryption accelerator that,
however, only supports the version 4.0 security features. The
more recent Nike+ Fuelband SE uses the Qualcomm Bluetooth
Smart IC CSR1010A, which has a dedicated module for AES
encryption, but is limited to the BLE 4.1 specification too
[115].

C. Devices with 6LoWPAN stack

The Lifx Color 1000 light bulb system implements the
6LoWPAN protocol, and uses the Texas Instruments SoC
CC2538 [116]. This SoC is based on the ARM Cortex M3 and
implements AES in hardware. For 6LoWPAN applications, the
ATMEL SAMR21, already discussed in Section V-A, can also
be used. Another solution with AES hardware implementation
is the LTC5800-IPM by Linear Technology, which is based on
the ARM Cortex M3 [117].

D. LoRa devices

LoRa development boards use the STM32L052T8Y6 MCU
coupled with the Semtech SX1272 radio transceiver [118]. The
MCU is based on a Cortex M0+ microprocessor. Differently
from the previous protocols, not many consumer-level IoT
products that implement LoRaWAN are available. In fact,
LoRaWAN is more commonly used in sensor networks to
collect data from large areas: the products using this protocol
are heavily customized for each application.

VI. FINAL REMARKS

Given the widespread adoption of IoT solutions for sensor
networks, domotics, and health application, providing secure
communications in IoT networks is of paramount importance.
In this scenario, the end user is often unaware of the security
issues related to the devices which are part of her/his everyday
life. For example, without protections against eavesdropping,
IoT wireless networks can expose sensitive personal infor-
mation. Also, without authentication, malicious attackers can
masquerade as legitimate devices and disrupt IoT network
operations. In addition to the issues related to the proto-
col and network security design, the reduced computational
capabilities and the need for low energy consumption limit
the cryptographic functionalities that can be installed in IoT
devices.

As we have discussed in this paper, in ZigBee and BLE
implementations, ease-of-use is favored over strong security.
This is because of the supposedly non-critical applications
they usually support, underestimating the risk that such tech-
nologies can be exploited to enter more critical systems, for
example when a dual-stack device is attached to both a critical
and non-critical system.

6LoWPAN and LoRaWAN adopt two complementary se-
curity strategies. Since LoRaWAN can be used, for very
simple applications, without any transport and application
layers, the protocol has been designed with strong security
in mind and mandatory packet encryption and authentication.
The designers of 6LoWPAN and CoAP, instead, decided to
delegate the security aspects to other layers and hardened only
the aspects strictly connected to the protocol operation (e.g.,
routing and fragmentation). This allows, for example, the use
of CoAP over LoRaWAN, without incurring in the cost for
encryption and key exchanges at multiple levels.

Additional security extensions to existing standards have
been proposed in the literature, but they have not been adopted
by standardization entities and in commercial devices yet. For
example, [72] proposes CryptoCoP, an encryption protocol
for resource-constrained devices that supports energy-efficient
symmetric key cryptography for BLE. Ref. [119] proposes
another interesting solution to decentralize computationally
intensive tasks of devices to a trusted and unconstrained node
of the network; this node is then responsible for the calculation
of the master session key on behalf of a group of constrained
IoT devices. In [120], authors investigate some issues with
security improvement proposals found in the literature for
IoT devices, particularly for the Fitbit fitness trackers. In
[121], an algorithm for IoT connection establishment and key
exchange, between node and mediator, based on timestamps
is proposed. The time-based secure key generation approach
aims at efficiently managing and renewing the keys to provide
a trustful connection, while guaranteeing the integrity of data
transmitted over an insecure channel. Timestamps and nonces
are also used to avoid attacks based on packet fragmentation
in 6LoWPAN, as explained in [122].

VII. OPEN CHALLENGES

Despite the many mechanisms proposed by security ex-
perts, the field of IoT cybersecurity still offers a number
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of open research challenges. In Tab. III are reported the
security mechanisms that the different technologies implement
to fulfill the requirements specified by the security goals at the
information, access and functional levels. In the same table,
the vulnerabilities that have been identified in the literature are
summarized. These vulnerabilities allow a malicious entity to
attack the IoT devices and threat the security goals. In Tab. IV,
the attacks described in the paper are grouped into five relevant
classes and, for each of them, the technologies vulnerable to
attacks of that type are highlighted. A blank cell means that, to
the best of our knowledge, there are not works in the literature
that study the vulnerability of that technology to that specific
class of attacks.

From the table we can see that both ZigBee and 6LoWPAN
suffer from attacks against the network communication proto-
cols, as the routing information in the packets are not usually
authenticated. Similarly, they are subject to energy or resource
depletion attacks that force the nodes to process a large
number of forged packets. Full header and control packets
authentication would block many of such attacks and improve
the functional level robustness of the network. The deployment
of such comprehensive authentication procedures, however, is
hindered by two factors. The first is linked to the lack of a
widely accepted lightweight encryption algorithm that could
be implemented in hardware, or be supported by the most
common cryptographic libraries for embedded devices. The
second relates to the supplementary information to be added
to the packets for this additional authentication requirement,
which would increase the already significant overhead incurred
for short payload messages. Therefore, there is a need for
strong authentication mechanisms that use a small amount of
additional space in the packet, or for mechanisms using alter-
native types of information, e.g., acquired from the physical
layers. Physical layer authentication is a possible solution, but
its maturity level is still insufficient for its implementation in
commercial products.

A second open challenge is related to the management of
shared cryptographic keys, which is a common weakness of
the different protocols (see Tab. IV). As mentioned in the
protocol analysis, commissioning and configuration procedure
often require a shared key among all the nodes in the network.
The management of such a key, however, is a complex task,
since a key update requires its secure and timely distribution
over the whole network. Moreover, additional overhead is
required to guarantee the consistency of the shared key among
the devices. Since a shared key is more likely to be discovered
by attackers, key rotation should happen quite frequently,
further exacerbating the problems. To avoid such complexity
in shared key management, a mechanism is needed to allow
devices to create and update shared keys independently, for
example by using information available to all devices but
unknown to attackers.

As we have seen, the physical implementation of a given
technology is as important as its theoretical design. For ex-
ample, the use of microcontrollers with poor quality entropy
sources may allow an attacker to extract the key used in the
cryptographic routines. Also, devices that do not randomize
identifiers transmitted in clear, like MAC addresses, can be

exploited to attack the users’ privacy.
The European Union Agency for Network and Information

Security, in [123], evaluates good practices to secure the life-
cycle of IoT products and servers, looking at all the security
aspects in this scenario. Security measurements are categorized
into the three phases of IoT devices life-cycle: starting from
the development of the products to their usage, passing through
their integration in smart networks.

While the amount of issues reviewed in this paper is
consistent, we believe that a more careful design of the devices
and the networks will make IoT systems really secure and will
enable their use also for critical applications.
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Table III
SUMMARY OF THE SECURITY GOALS, VULNERABILITIES AND MECHANISMS FOR THE ANALYZED TECHNOLOGIES.

Technology Information level (Integrity, Anonymity,
Confidentiality, Privacy)

Access level (Access control, Authenti-
cation, Authorization)

Functional level (Resilience, Self orga-
nization)

Zigbee AES-CCM mode for message encryp-
tion and authentication using two differ-
ent 128-bit keys for unicast (link key)
and broadcast communications (network
key); 128-bit MIC for integrity protec-
tion; 4-byte frame counter for reply pro-
tection. Vulnerabilities: if the network
key is not changed periodically, an at-
tacker that has discovered the key, is able
to decrypt all the exchanged messages.

The Trust Center controls the access to
the network: it is responsible for device
authentication, join request management,
network and link keys distribution. Vul-
nerabilities: the frames used to trans-
mit commissioning commands are not
authenticated, therefore an attacker can
send these commands pretending to be-
long to the network.

In case of broken link, the device has
to request again for access the network.
Vulnerabilities: an attacker can force
this situation to eavesdrop information
during the subsequent commissioning
process.

BLE AES-CCM mode for message encryp-
tion and authentication using a 128-bit
key. Vulnerabilities: if the device MAC
address is not frequently changed, an
attacker can violate user anonymity.

The master device acts as initiator in the
communication setup and controls the
access to the network. Vulnerabilities:
in most of the pairing methods the key
is known or can be brute-forced by an
attacker during the process.

In case of broken link, the device has to
request again for access the network.

6LoWPAN and CoAP Neither 6LoWPAN nor CoAP provide
secrecy, authentication, or integrity pro-
tection. Vulnerabilities: if no additional
security mechanisms are used, the at-
tacker can gain access to the devices.
The lack of authentication allows the
attacker to make the network service
unavailable.

The LBR is responsible for the manage-
ment of the network devices; the RPL
offers the routing functionality though
the creation of the DODAG tree. Vul-
nerabilities: an attacker can clone the
identity of a node if there is no con-
trol on the number of instances of each
device identity. If no disjoint paths are
created inside the DAG and no link layer
acknowledgments are sent, an attacker
can make the service unavailable.

In case of broken link, DAG global
repair and local repair mechanisms are
used.

LoRaWAN AES for message encryption with two
128-bit keys for command (network ses-
sion key) and application messages (ap-
plication session key); 32-bit MIC for
integrity protection. Vulnerabilities: the
keys are all stores in the devices and
can be discovered by an attacker. If
the same key is used for unicast and
broadcast communications, an attacker
that eavesdropped the key can decrypt
all the messages.

The network server manages the join
process. Vulnerabilities: as the UDP
protocol is used, an attacker can modify
the management packets and make the
service unavailable. In class B networks,
an attacker can extract information from
the beacon messages that are sent unen-
crypted.

In case of broken link, the device has to
request again for access the network.

Table IV
SUMMARY OF THE CLASSES OF ATTACKS THAT HAVE BEEN IDENTIFIED AGAINST DEVICES IMPLEMENTING A SPECIFIC TECHNOLOGY. EMPTY CELL: NO
ATTACK REPORTED IN THE LITERATURE. FULL CELL: AN ATTACK HAS BEEN REPORTED IN THE LITERATURE. THE TARGET OF THE ATTACK IS ENCODED

IN THE CELL COLOR: RED FOR ATTACKS TO THE INFORMATION LEVEL, BLUE FOR THE ACCESS LEVEL, GREEN FOR THE FUNCTIONAL LEVEL.

Technology Key-related attacks
(eavesdropping, plain-
text attacks, key
extraction attacks,
side-channel analysis)

DoS attacks to the data
plane (sink hole attack,
black hole attack, flood-
ing)

DoS attacks to the device
(reset, ghost attack, hi-
jacking, forging of con-
trol packets, energy at-
tacks)

Replay attacks Attacks to the privacy of
the communications (de-
vice scan, device track-
ing and user activity pro-
filing)

Zigbee

ZLL

BLE

6LoWPAN

LoRaWAN
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