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Abstract—The complexity of the fifth generation of cellular
systems (5G) will call for the deployment of advanced Machine
Learning (ML) techniques to control and optimize the network.
In this paper, we present an application of machine learning to
predict the number of users in each base station of a cellular
network, based on a dataset with real data collected from
hundreds of base stations of a major U.S. national operator.
We show that by exploiting the spatial correlation introduced
by the mobility of the users it is possible to improve the
prediction accuracy with respect to that of completely distributed
methods, based on local information only, with a reduction of the
prediction error by up to 53%. Finally, we describe a use case
in which these predictions are used by a higher-layer application
to route vehicular traffic according to network Key Performance
Indicators (KPIs).

I. INTRODUCTION

The future generations of cellular networks will be designed
to satisfy the communication needs of the connected society
for 2020 and beyond. According to [2], 5G networks will
support data rates and spectral efficiencies much higher than
4G, with multi-gigabit-per-second peak data rates, ultra-low
latency (i.e., 1 ms round-trip in the radio access), highly
mobile communications, up to 106 connections per km2 and
a 100-fold increment in energy efficiency.

The solutions that next generation networks will introduce
to satisfy these requirements (e.g., mmWave communications,
ultra-dense networks, massive MIMO [3]) will increase the
complexity of the network, which will consequently need
to self-optimize and operate in an autonomous way. In this
context, the integration of intelligence in the network through
ML and Artificial Intelligence (AI) is seen as a promising
enabler of self-organizing approaches [4], and also new appli-
cations, as we will show in this paper. The usage of ML and
AI techniques to perform autonomous operations in cellular
networks has been widely studied in recent years, with use
cases that range from optimization of video flows [5] to
energy-efficient networks [6] and resource allocation [7]. This
direction is combined with the usage of big-data analytics, that
leverages the massive amounts of data generated in mobile
networks to yield deeper insights on the behavior of networks
at scale [8]. However, despite the importance of this topic,
the state of the art lacks considerations on the actual gains
that ML approaches can introduce in real large-scale cellular
network scenarios.

An extended version of this paper is presented in [1]. Supratim Deb is
current employed by Facebook; work was done when the author was working
at AT&T Labs.

In this paper we focus on the application of machine
learning techniques to predict the number of active users in the
base stations of a cellular network. We propose to exploit the
spatial correlation that naturally exists in a cellular networks,
and is introduced by the constrained mobility of the users
in an urban environment, to improve the performance of the
prediction algorithms with respect to the state of the art,
with a reduction of the prediction error by up to 53%. We
characterize the accuracy of the proposed prediction scheme
by leveraging a dataset from a major U.S. operator, with
hundreds of base stations in the San Francisco area. We test
the proposed solution (based on Gaussian Process Regressors
(GPRs)) against other techniques (Random Forest Regressors
(RFRs), Bayesian Ridge Regressors (BRRs)), leveraging the
architecture and clustering process described in [1]. Finally,
we describe a possible application of the ML pipeline for
the prediction of KPIs in a cellular network, where the users
of the mobile networks drive through a city and choose
among multiple available routes also according to the predicted
quality of the connection on any path.

The remainder of the paper is organized as follows. In
Sec. II we review the relevant state of the art, and in Sec. III
we describe the dataset that will be used in this paper. Then,
in Sec. IV we introduce the relevant ML algorithms, the
prediction pipeline and the results we obtained, and illustrate
the application of the ML infrastructure in Sec. V. Finally, we
conclude the paper in Sec. VI.

II. STATE OF THE ART

The deployment of ML techniques in cellular networks is
a theme that has drawn a lot of attention recently, due to the
restored importance of ML and AI throughout all facets of the
industry. The surveys in [9], [10] review recent results related
to the application of regression and classification techniques
to mobile and cellular scenarios, to optimize the performance
of complex networks. Reference [11] gives an overview of
how machine learning can play a role in next-generation
5G cellular networks, and lists relevant ML techniques and
algorithms. The usage of big-data-driven analytics for 5G is
considered in [12], [13], with a discussion on how data-driven
approaches can empower self-organizing networks. However,
none of these papers provides results based on real large-scale
datasets of cellular operators that show the actual gains of
data-driven and machine-learning-based approaches.

Furthermore, several papers report results on the prediction
of mobility patterns of users in cellular networks. The authors
of [14], [15] use network traces to study human mobility
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patterns, with the goal to infer large-scale patterns and under-
stand city dynamics. Reference [16] proposes to use a leap
graph to model the mobility pattern of single users. With
respect to the state of the art, in this paper we focus on the
prediction of the number of users associated to a base station,
in order to provide innovative services to the users themselves,
and propose a novel cluster-based approach to improve the
prediction accuracy.

III. THE DATASET

This section describes the dataset that will be used to
train and test the machine learning algorithms discussed in
this paper. The network traces we utilize are based on the
monitoring logs of 472 base stations of a national U.S.
operator in the San Francisco area, for more than 600000 User
Equipments (UEs) per day, properly anonymized during the
collection phase. The base stations in the dataset belongs to a
4G LTE-A deployment, which at the time of writing represents
the most advanced cellular technology commercially deployed
at a large scale. We argue that, even if 5G NR networks will
have more advanced characteristics than Long Term Evolution
(LTE), this dataset can represent a first NR deployment at
sub-6 GHz frequencies in a dense urban scenario. The mea-
surement campaign was run in February 2017 (01/31/2017 −
02/26/2017), with monitoring logs collected every day from
3 P.M. to 8 P.M.. Fig. 1 shows an example of time series
for different metrics from 4 LTE evolved Node Bases (eNBs),
with a time step of 5 minutes.

Given the sensitive nature of this data, we applied stan-
dard policies to make sure that individuals’ privacy was not
undermined with the data collection and processing. In this
regard, the International Mobile Subscriber Identity (IMSI)
(i.e., the identifier associated to a single user in the traces)
of each UE was anonymized through hashing. Additionally,
the analysis in this paper only uses aggregate metrics, which
do not single out the behavior of any particular user. First,
user data is grouped for each cell (i.e., mapped to a sector
and carrier frequency) and, then, the data for the cells in the
same base station (i.e., with the RF equipment in the same
physical location) is aggregated again.

The traces used in this paper register a number of standard-
ized events in LTE eNBs, mostly involving the mobility of
users. The raw data is further processed to define time series
of different quantities of interest in each eNB at different
time scales (from minutes to weeks), such as (i) the eNB
utilization, represented by the ratio of used and available
Physical Resource Blocks (PRBs); (ii) the number of incoming
and outgoing handovers; and (iii) the number of active UEs,
i.e., connected and involved in a data exchange. Other metrics
could also be extracted, for example related to the user latency,
link statistics (e.g., error probability), or different estimates
of the user and cell throughput, but the logs reporting these
quantities are less frequent and regular than those we consider,
and do not represent an accurate source for the estimation of
the network performance.
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(a) Utilization (averaged over a 15-minute interval).
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(b) Number of active UEs (summed over a 15-minute interval).
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(c) Number of incoming handovers (summed over a 15-minute interval).

Fig. 1: Example of time series from the traces collected for 4 eNBs in the
San Francisco dataset over 7 days.

IV. PREDICTING THE NUMBER OF USERS IN BASE
STATIONS

In the following paragraphs, we will present procedures and
results for the prediction of the number of active users in
the base stations of a cellular network. This information can
be exploited to predict other relevant KPIs, e.g., the network
load, or the user throughput. We will compare the accuracy
of the prediction according to two different methods. The
first uses only local information (i.e., available in each single
base station) to perform the training and the prediction. This
strategy can be used in networks where there is no or limited
coordination among base stations, which are complete and
self-contained pieces of equipment, as in 4G LTE networks.
The second strategy, instead, relies on the availability of shared
information from a set of neighboring base stations, given
that it aims at jointly predicting the number of users in each
one, based on the common history of the cluster of base
stations. Therefore, it requires a higher level of coordination
and information exchange between the base stations and a
network controller. For example, as described in [1], this
approach can be implemented in a 5G NR network deployed
following the xRAN/Open RAN paradigms, where groups of
Next Generation Node Bases (gNBs) are associated with edge-
based network controllers that handle their control plane.



Considering the San Francisco dataset described in Sec. III,
we will first focus on prediction results for a specific set of 22
base stations, clustered with the procedure described in [1],
and then extend the analysis to all the 472 available nodes,
showing how a cluster-based approach reduces the prediction
error with respect to a local-based approach.

A. Data Preprocessing

The number of users in the base stations of the San
Francisco dataset has been sampled with a time step of Ts = 5
minutes. The time series were then split into a training set
(used for k-fold cross validation) and a test set. In particular,
the training set ranges from January 31st to February 20th,
and the test set is in the interval between February 21st and
February 26th.

Consider B as the set of all the base stations in San
Francisco. The goal is to obtain a multi-step ahead prediction
of the number of users N i

u(t + L) at times t + 1, . . . , t + L,
where i ∈ B is the identifier of the base station, and L ≥ 1
is the look-ahead step of the forecast. The prediction is based
on the data collected before time t, which is characterized by
three different features. The first two are a boolean b(t) that
specifies if the considered day is a weekday, and an integer
h(t) ∈ {0, . . . , 4} that indicates the hour of the day (from
3 P.M. to 8 P.M.). The third feature is given by the past W
samples of the number of users, with W the window of the
history used for the forecast, i.e., N i

u(t+ τ), τ ∈ [−W +1, 0].
We also analyzed other possible features, such as the number
of handovers and the cell utilization, but they exhibited a
small correlation with the prediction target. Given the daily
discontinuities of the dataset, we discard the first W samples
of each day, therefore the size of the training (Ntr) and test
(Nte) sets depends on the value of W .

For the local-based prediction, in which each base station
learns the future number of users using only its own data,
the training and test set are represented by the feature matrix
X ∈ RNk,3W , k ∈ {tr, te}, with a vector

[N i
u(t−W + 1), h(t−W + 1), b(t−W + 1) . . . ,

N i
u(t), h(t), b(t)] (1)

in each row, and by the target vector y ∈ RNk,1, k ∈ {tr, te}.
With the cluster-based method, instead, the target of the
prediction is the vector of the numbers of users for all the base
stations in the cluster. Thus, for the set Cd = {id, . . . , jd} ⊂ B
with the Nd

b base stations of cluster d, each row of the target
matrix Y ∈ RNk,N

d
b , k ∈ {tr, te} is composed by a vector

[N id
u (t+ L), . . . , N jd

u (t+ L)]. (2)

Each row of the feature matrix X ∈ RNk,W (Nd
b +2), k ∈

{tr, te} is instead a vector

[N id
u (t−W + 1), . . . ,

N jd
u (t−W + 1), h(t−W + 1), b(t−W + 1), . . . ,

N id
u (t), . . . , N jd

u (t), h(t), b(t)]. (3)

Bayesian Ridge Regressor [18], [19]

α {10−6, 10−3, 1, 10, 100}
λ {10−6, 10−3, 1, 10, 100}

Random Forest Regressor [20], [21]
Number of trees Nrf {1000, 5000, 10000}

Gaussian Process Regressor [22]

α {10−6, 10−4, 10−2, 0.1}
σk {0.001, 0.01}

TABLE I: Values of the hyperparameters of the different regressors for the
k-fold cross-validation.

The values of the numbers of users in the training and test
sets are transformed with the function log(1 + x) and scaled
between 0 and 1. The scaling is fitted on the training set, and
then applied also to the test set. The metric we consider for the
performance evaluation of the different methods and prediction
algorithms is the Root Mean Squared Error (RMSE), defined
for a single base station i as

σi =

√√√√1/Nte

Nte∑
t=1

(yi(t)− ŷi(t))2, (4)

with yi the time series of the actual values for the number of
users for base station i, and ŷi the predicted one.

B. Algorithm Comparison

We consider and compare various machine learning algo-
rithms for prediction: the BRR for the local-based prediction,
and the RFR and the GPR for both the local- and the cluster-
based forecasts.1 We used the implementations from the well-
know open-source library scikit-learn [17]. For each algorithm,
we compared different values of the past history window
W ∈ {1, . . . , 10} and computed the prediction at values of the
future step L ∈ {1, . . . , 9}, i.e., over a maximum time span of
45 minutes. We performed 3-fold cross-validation to select the
best hyperparameters for each regressor and values of L and
W . The range of the hyperparameters we tested is summarized
in Table I. Each fold is split using the TimeSeriesSplit
class of scikit-learn, i.e., without shuffling the training set, and
with indices monotonically increasing in each split, to keep the
consecutive temporal samples ordered in time.

The BRR, which was used for traffic prediction in an
urban scenario in [19], integrates a Bayesian probabilistic
approach and the ridge L2 regularization [18]. The Bayesian
approach automatically fits the available data, and only needs
the selection of the α and λ parameters of the Gamma priors.
However, it does not account for multi-output prediction, thus
it can be applied only to the local-based scenario.

The RFR, which for example was used in [21] for popula-
tion forecast, is a classic ensemble algorithm that (i) trains Nrf
regression trees from samples bootstrapped from the training
set and (ii) averages their output for the prediction [20]. Only

1We also considered a strategy based on neural networks (i.e., Long Short
Term Memory (LSTM)), however, given the reduced size of the training set,
it underperformed with respect to the other regression methods.



Fig. 2: Deployment of a sample cluster of San Francisco base stations involved
in the joint prediction described in Sec. IV-C, obtained using the method
described in [1].

two hyperparameters need to be tuned, i.e., the number of trees
Nrf and the number of random features to sample. For Nrf , a
higher value yields improved generalization capabilities, at the
cost of a longer training time. We set the number of random
features to sample when splitting the nodes to build additional
tree branches equal to the number of features for regression
problems, i.e., the number of columns in the training/testing
matrix X. RFRs support the prediction of both scalars and
vectors, therefore they can be applied in the local- and the
cluster-based scenarios.

The third algorithm is GPR, i.e., a regressor that fits a
Gaussian Process over the input data [22]. It uses a prior with
zero mean, and the covariance matrix determined by a kernel.
For this problem, we chose a kernel with the following form:

k(xi, xj) = σ2
k +xi ·xj +

(
1 +

d(xi, xj)
2

2αl2

)−α
+ δxixj . (5)

It is given by the sum of a dot product kernel, that can fit non-
stationary behaviors, a rational quadratic kernel with l = 1,
and a white kernel, that models the noisy part of the input.
We used the GPR for both single-output and multi-output
predictions.

C. Performance analysis

Before applying the aforementioned regressors to the whole
available dataset, we consider a sample cluster of N0

d = 22
base station (obtained with the clustering process described
in [1]), whose relative positions are shown in Fig. 2.

Fig. 3 shows the average RMSE σ̂ = Ei∈C0 [σi] of the
base stations in the set C0 associated to the sample cluster,
for different methods using either the local information only,
or the cluster-based approach, and a fixed value of the past
window W = 1. Among the local-based algorithms, the BRR
shows the best performance for all the values of the look-
ahead step L, with a reduction of the RMSE of up to 18% and
55% with respect to the GPR and RFR for L = 9. The GPR,
instead, yields better results than the RFR for the cluster-based
techniques, with an improvement up to 50% (for L = 1). As
expected, by increasing the look-ahead step L the prediction
accuracy decreases. However, when comparing the cluster- and
the local-based methods, the former perform better, especially
as the look-ahead step increases: the RMSE for the cluster-
based GPR saturates around σ̂ = 14.8, while that for both
the BRR and the local-based GPR keeps increasing. For small
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(b) A different windowW is selected for each method and look-ahead step L to minimize
the RMSE σ̂. The values of W are reported in Table II.

Fig. 3: RMSE σ̂ for different local- and cluster-based prediction methods, as
a function of the look-ahead step L, and for different windows W .

Look-ahead step L 1 2 3 4 5 6 7 8 9

BRR 6 6 4 4 3 3 3 2 2
cluster-GPR 3 2 2 2 2 1 6 5 4

TABLE II: Values of W for the plot in Fig. 3b for the BRR and the cluster-
based GPR

values of L, instead, the accuracy of local- and cluster-based
methods is similar.

Fig. 3b instead reports the RMSE varying the value of W ,
which is selected in order to minimize the RMSE σ̂ for each
prediction method and value of L. Table II reports the values
W for the two most accurate methods, the local-based BRR
and the cluster-based GPR. It can be seen that, with respect
to Fig. 3a, where W is fixed, the difference is limited for the
GPR and BRR (i.e., below 5%), while it is more considerable
for the local-based RFR.

Furthermore, the spatial dimension (i.e., the usage of a
joint prediction based on the cluster) is more impactful on
the RMSE than the temporal one (i.e., the past history used
as a feature). Indeed, while the RMSE for the GPR and
BRR improves by up to 5% by varying W , it decreases by
up to 50% when comparing the local- and the cluster-based
methods. The target of the prediction is indeed the number of
users at a cell level (contrary to prior work which focused on
single-user mobility prediction [16]), thus the geography of
the scenario in which the base stations are deployed actually
limits the possible movements of users across neighboring
cells. These constraints on the mobility flow translate into a
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spatial correlation among the number of users in neighboring
base stations at time t and at time t+ L.

However, there are still some limitations to the accuracy of
the prediction. Fig. 4 reports an example of the true and the
predicted (for L = 3, i.e., 15 minutes) time series for two
different base stations, with a low and high number of users.
It can be seen that the true time series exhibit daily patterns,
but also a high level of noise. As a consequence, the predicted
values manage to track the main trend of the true time series,
but do not represent the exact value of the number of users in
all cases. This is more noticeable with a low number of UEs,
as in Fig. 4b, which also shows more limited daily variations.

Given the promising results of the cluster-based approach
on the sample cluster, we selected the best performing local-
and cluster-based methods, i.e., respectively, the BRR and the
GPR, and performed the prediction on all the base stations of
the San Francisco area, once again clustered according to the
approach in [1]. The average RMSE over all the base stations
is reported in Fig. 5. The cluster-based method consistently
outperforms the local-based one. The reduction in the average
RMSE over all the clusters Eclusters[σ̂] is 18.3% for L =
1 (from Eclusters[σ̂] = 7.24 to Eclusters[σ̂] = 6.11) and is
as large as 53% for L = 9 (from Eclusters[σ̂] = 17.42 to
Eclusters[σ̂] = 11.34).

Fig. 6: Map of the routes. The dots represent the visited base stations. Notice
that, for route 2 (the red one), several base stations are shared with either the
blue or the green routes.

V. ROUTE OPTIMIZATION WITH NETWORK KPIS

Figs. 3 and 5 show that, by exploiting the spatial corre-
lation available in real network deployments, it is possible
to accurately forecast the conditions of the network (e.g.,
in terms of number of users) and predict critical situations
even on a medium-timescale horizon (e.g., 45 minutes). The
knowledge of the future number of users in base stations can
be exploited to improve the performance of the network in
various ways. For example, it may allow network operators to
perform predictive load-balancing, pre-configure bearers, scale
the radio resources to meet the expected demands, and so on.
We argue that a practical deployment of these prediction-based
optimizations can benefit from the reduction in prediction error
yielded by the cluster-based method we propose.

Moreover, the prediction can be used by network operators
to also provide innovative services to their users. Consider
for example a scenario in which a vehicle travels between
two locations (e.g., points A and B in Fig. 6). During the
journey, the passengers may use a cellular connection to surf
the web, stream multimedia content or attend a conference
call. Thus, if multiple routes with similar Estimated Times of
Arrival (ETAs) are available, the driver may prefer a route to
another according to the expected quality of the connection
on the path. Therefore, using the procedure described in this
paper, the cellular network operators can predict the number
of active users in the cells to forecast relevant KPIs and inform
the end users on which is the best route for their journey, thus
offering them novel predictive services.

Fig. 6 reports an example of four different routes in the San
Francisco area, three with a similar ETA and a longer one, as
reported in Table III. Table III also provides different metrics
(which depend on the predicted number of users) associated
to the 4 routes and in different dates. Route 1 (in blue), i.e.,
the quickest one, does not always offer the best performance
for the three departure times considered. For example, among



Feb. 23rd, 19:00 Feb. 24th, 19:00 Feb. 24th, 19:20

Route R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

Ŝ [Mbit/s] 1.93 2.51 2.36 2.74 1.72 2.00 2.28 2.89 2.05 2.49 1.98 2.86
Do,max [s] 133.47 157.8 172.5 171.2 152.4 157 148.8 169.1 152.1 123.7 172.5 116.7

TABLE III: Average throughput Ŝ and maximum outage duration Do,max on the four itineraries from Fig. 6, for different departure times in February 2017.
For the three routes with a similar duration, the colored cells represent the best route for the metric of interest.

the journeys with comparable travel time, route 2 (in red) has
the highest throughput on Feb. 23rd, 19:00, while route 3 (in
green) is the best at the same time of the next day. Instead,
the longest route, which connects points A and B but is 50%
longer than the shortest, always offers the highest average
throughput, but, in some cases, may be affected by the longest
outage.

Therefore, according to the passengers’ preferences, mul-
tiple routes can be identified, with varying throughput and
outage performance. Furthermore, different departure times
translate into different rankings for the routes. It is not thus
possible to simply rely on previous-days average statistics to
rank the routes, and this calls for the adoption of the medium-
term prediction strategy described in this paper to get a reliable
estimate for the actual time interval in which the user will
drive, based on the network conditions for that time interval.

VI. CONCLUSIONS

In this paper we described a possible application of machine
learning techniques in cellular networks, i.e., the prediction
of the number of users which are connected and exchanging
data with the base stations of the network. The results we
obtained are based on a dataset from a major U.S. operator,
comprising 472 base stations in the San Francisco area, with
measurements collected for a month in 2017.

We showed for the first time that the prediction of the
number of users is more accurate when the spatial correlation
introduced by mobility patterns is accounted for, and that the
spatial information yields a higher reduction in the prediction
error than the temporal one. Finally, we outlined possible
applications of the prediction, ranging from network control to
novel user services, with an example based on the real network
dataset from San Francisco. As extensions of this work, we
will compare additional prediction techniques, and apply the
regression to other metrics in the network, to understand the
limits of predictability in a cellular network.
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[14] R. Becker, R. Cáceres, K. Hanson, S. Isaacman, J. M. Loh,
M. Martonosi, J. Rowland, S. Urbanek, A. Varshavsky, and C. Volinsky,
“Human mobility characterization from cellular network data,” Commu-
nications of the ACM, vol. 56, no. 1, pp. 74–82, Jan 2013.

[15] R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Urbanek, A. Var-
shavsky, and C. Volinsky, “A tale of one city: Using cellular network
data for urban planning,” IEEE Pervasive Computing, vol. 10, no. 4, pp.
18–26, April 2011.

[16] W. Dong, N. Duffield, Z. Ge, S. Lee, and J. Pang, “Modeling cellular
user mobility using a leap graph,” in International Conference on Passive
and Active Network Measurement. Springer, 2013, pp. 53–62.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, October 2011.

[18] D. J. MacKay, “Bayesian interpolation,” Neural computation, vol. 4,
no. 3, pp. 415–447, May 1992.

[19] Q. Shi, M. Abdel-Aty, and J. Lee, “A Bayesian ridge regression analysis
of congestion’s impact on urban expressway safety,” Accident Analysis
& Prevention, vol. 88, pp. 124–137, Mar. 2016.

[20] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, October 2001.

[21] R. W. Douglass, D. A. Meyer, M. Ram, D. Rideout, and D. Song,
“High resolution population estimates from telecommunications data,”
EPJ Data Science, vol. 4, no. 1, p. 4, Dec. 2015.

[22] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.


