
A Deep Neural Network Approach for Customized
Prediction of Mobile Devices Discharging Time
Mattia Gentil, Alessandro Galeazzi, Federico Chiariotti, Michele Polese, Andrea Zanella, Michele Zorzi

Department of Information Engineering, University of Padova – Via Gradenigo, 6/b, 35131 Padova, Italy
Email: {gentilma, galeazzial, chiariot, polesemi, zanella, zorzi}@dei.unipd.it

Abstract—The role of mobile devices, like smartphones or
tablets, is becoming more and more important in everyday life, at
the point that their unavailability due to early or unexpected
battery discharge is perceived as a serious issue. Therefore,
there is an urge for smart and efficient battery management
algorithms that can prolong the duration of the battery charge.
To this end, a reliable prediction of the battery discharging
process would represent a precious tool to enable energy-efficiency
optimization mechanisms. In this paper, we address this challenge
by considering different machine learning techniques to provide
an accurate and user-dependent prediction of the discharging
time of a mobile device and, eventually, we propose a Deep
Neural Network model that provides the best performance. Unlike
previous solutions proposed in the literature, our method exploits
space-time data from the device operating system (Android) to
learn the specific battery usage pattern of the user, thus offering
a customized prediction of the discharge process. We show that
such model outperforms the other machine-learning methods
considered in this study, and achieves much better performance
than the deterministic linear fitting methods widely used in
commercial devices.

I. INTRODUCTION

Internet access from mobile devices has been rising in the
last years, with an eightfold increase projected by 2020 [1].
Furthermore, the variety and complexity of the services offered
to mobile users are also constantly growing. These factors put
a strain on the duration of the battery charge of mobile devices,
which usually have to be recharged during the day to provide
the required dependability [2]. While there is a huge research
effort to increase the battery capacity and recharging speed,
another approach looks at techniques to improve the energy
efficiency of the devices, e.g., implementing smart energy-
saving policies [3]. In this respect, an accurate estimate of the
residual charge duration can be useful both to drive the energy-
saving policies implemented by the operating system of the
device and to let the user adopt energy-preserving strategies
when using his/her mobile device.

As of today, most devices predict the battery depletion time
by taking into account the mean duration of a full battery
charge and the most recent battery-draining trend, disregarding
time and location information [3]. In this work, we propose a
novel method for the prediction of the battery depletion time
that makes use of a Deep Neural Network (DNN) to draw
a personalized battery-usage pattern from time and location
information provided by the mobile device. We apply our
method to a dataset that includes mobility data collected by the
LifeMap monitoring system at Yonsei University in Seoul [4].
Results show that our prediction method is by far more accurate
than a popular method, currently employed in commercial

mobile devices to predict the residual duration of the battery
charge, and outperforms other machine-learning methods. We
also provide insights on the importance of location information
to the accuracy of such a prediction, and on the computational
complexity of the proposed approach.

The rest of the paper is organized as follows. Sec. II
overviews the state of the art on prediction techniques in
mobile networks, with specific attention to the prediction of the
battery charge duration. Sec. III introduces the preprocessing
and model selection procedures, while Sec. IV presents the
performance of our model in comparison with other baseline
methods. Finally, Sec. V concludes the paper with some re-
marks and possible future extensions.

II. RELATED WORK

Predicting the state evolution of mobile systems is an in-
teresting research topic, which has received much attention
in the last decade. The prediction of a device trajectory in
a mobile network, for example, is a fundamental problem
that has been addressed in many research papers, and with
different approaches [5]–[9]. In particular, [7] and [9] use
Neural Networks (NNs) to predict the next location of a device
from the past trajectory. Another network parameter that is
suitable for the prediction of the device position is the wireless
channel gain, which is considered, for example, in [10] and
[11] by using Support Vector Machines (SVMs) and Bayesian
regressors, respectively. These systems provide accurate esti-
mates, but they do not consider the energy consumption, which
is a fundamental parameter in mobile device applications.

Machine learning techniques have also been applied to pre-
dict the battery charge duration of mobile devices. Most of the
proposed solutions based the forecast on the current state of the
device together with the battery-discharge history. For example,
Zhao et al. [3] use the multiple linear regression prediction
method: the discharge rate is calculated by comparing the
current device status (e.g., CPU load, LCD brightness and I/O
device usage) with the discharge rates that were observed in
the past.

In [12], two NNs are trained in order to predict the discharg-
ing curve of batteries. Starting from some considerations on the
electro-chemical nature of rechargeable batteries, the authors
derive a non-linear discharging pattern. In order to model this
behavior, they feed the NNs with some key parameters of the
battery and device state, such as time, battery level, battery
temperature, and resource usage in the past. The obtained
predictor can estimate the remaining working time with an
accuracy of 3%. However, their model was implemented and

polesemi
Sticky Note
© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works



evaluated on a digital multimeter under controlled research
conditions and no testing was performed on real world data.
Wen et al. [13] propose to predict battery lifetime by using an
online and offline calculation. First, a reference discharge curve
is derived from a one-time, full-cycle, voltage measurement of
a constant load, and is suitably transformed to reduce prediction
complexity. Then, the forecasting is performed by mapping the
current discharging data on the reference curve, using linear
fitting or Least Squares methods.

An empirical approach to battery lifetime prediction is pro-
posed in [14]. After analyzing a large dataset containing the
discharging patterns of several users and training a general
model, they built a tool to predict smartphone charge levels
by classifying smartphone users based on the comparison of
their discharging patterns with those in the dataset.

In [15], Rakmatov et al. study the problem of battery
discharge time prediction from a theoretical point of view.
Starting from the physical working principles of a lithium-
ion electrochemical cell, a high-level model of the battery is
built. The discharging coefficients of the model are estimated by
simulation and statistical fitting of empirical data, and variable
and constant loads are taken into account to improve the
estimate of the residual operating lifetime of the device.

Most of the techniques mentioned above do not take individ-
ual users’ discharging patterns and personal behavior informa-
tion into account, but instead exploit the depletion discharging
curve of a generic smartphone usage or focus on a short-term
prediction mainly employing low-level information. Although
current battery level and resource usage are fundamental to
predict the battery discharge time, we advocate that a much
more reliable and long-term estimation of the battery charge
can be obtained by considering some space-time features of
the device usage patterns. Our model will be able to capture
time- and location-dependent user habits which can have a
heavy impact on the battery lifetime [3]. Moreover, it is highly
scalable to different types of devices and batteries and does
not require manual tuning or reference parameters, unlike [13]
or [3].

III. SYSTEM MODEL

In this section we discuss the proposed estimation method.
We start by describing the dataset used in the study and the
selection of input and output parameters. Then, we explain
the preprocessing operations performed on the data to ease the
learning task of the DNN.

A. Dataset and features

The dataset from the LifeMap project [4] includes a wide
collection of mobility data that was gathered from the smart-
phones of 6 graduate students from Yonsei University over 6
months. More specifically, data about the battery level, position
and connectivity level of each smartphone were retrieved from
the operating system and stored every 10 minutes. Data clearly
span many charge and discharge cycles, but the battery charge
reached a critically low level only on a few such cycles, since
in many occasions the smartphones were recharged during the
day, before the battery charge dropped below critical levels.
Therefore, given this limitation of the dataset, we rely on the

10,000 20,000 30,000 40,000 50,000 60,000
0

20

40

60

80

100

System time [s]

B
at

te
ry

le
ve

l
[%

]

Linear fit
Discharge cycle

Figure 1: Example of battery discharge rate estimation. The read line with
cross markers shows one empirical discharge curve taken from the dataset,
while the blue line is the linear interpolation, whose intersection with the x-
axis provides the estimated depletion time. Note that the last marker of the
red line corresponds to the battery charge at the first sampling instant of the
recharge phase.

expected lifetime of the battery, as we will explain in the
following paragraphs.

To design our predictor, we first need to identify the features,
or input parameters, that have to be extracted from the dataset,
and the targets, or output values, of the machine learning
model. The choice of these parameters is discussed in the
following.

a) Target parameter: Since our purpose is to predict the
battery discharge process over time, the output of the estimator
should be a projection of the residual lifetime of the device in
the future. To build the training set for our machine learning
algorithm, hence, we need to find the (expected) residual
lifetime of the battery charge in each of the time instants of the
discharge phases where data were collected. For the discharge
phases that end with a non-negligible residual battery level, the
expected depletion time is estimated by linear extrapolation
of the charge levels during that cycle. More specifically, let
(t0, t1, . . . tn) be the set of sample times in a given discharge
period, and b(ti) be the value of the battery level (on a 0-100
scale) measured at time ti, i = 0, 1, . . . , n. If we take the whole
discharge cycle into consideration, the expected depletion time
is obtained as:

tdep = t0 − b(t0)
tn − t0

b(tn) − b(t0)
. (1)

Finally, the outputs yi used to train our prediction model are
obtained for each discharge cycle as

yi = tdep − ti, 0 ≤ i ≤ n . (2)

An example of this analysis is shown in Fig. 1. We observe
that this estimate is more accurate when b(tn) is small, i.e.,
when the discharge cycle ends with an almost complete dis-
charge of the battery, which is quite common with modern
devices [2]. The linear estimation of the depletion time is a
limit to the prediction accuracy, but the limit is inherent in the
dataset.

Moreover, we observe that the estimate of the residual battery
charge duration is more accurate when it becomes more useful,
i.e., when the battery level is low.



Architecture Activation Function α Training time [s] Evaluation time [s] R2 validation set R2 training set

(100, 100, 100, 100) identity 0.01 2.479 0.030 0.036 0.040
(300) logistic 1e-05 2.212 0.045 0.036 0.040
(100, 100, 100, 100) logistic 0.01 1.064 0.076 0.000 0.000
(300) ReLU 0.001 40.875 0.023 0.580 0.738
(100, 100, 100) ReLU 0.01 54.795 0.044 0.656 0.842
(100) tanh 0.01 17.947 0.031 0.568 0.699
(300) tanh 0.01 57.476 0.041 0.529 0.642
(100, 100, 100) tanh 0.01 76.726 0.066 0.754 0.853
(200, 150, 100, 50) tanh 0.12 111.439 0.108 0.806 0.904

Table I: Performance of the DNN for different parameter settings. The architecture column represents the number of nodes in the hidden layers of the DNN. The
identity activation function is f(x) = x, the logistic is f(x) = 1/(1 + e−x), and the rectified linear unit (ReLU) is f(x) = x if x > 0, f(x) = 0 otherwise.

b) Input features: Our model considers multiple inputs in
order to estimate the remaining battery lifetime, namely:

• Battery level: the current status of the battery is clearly
essential for a meaningful prediction.

• Time of the day: this parameter is essential to allow
the model to learn and recognize specific battery usage
patterns during the day. For instance, a user may make
a more intensive use of the smartphone while resting in
the evening, rather than during the day, or vice versa.
To capture these aspects, battery usage data need to be
coupled with time information.

• Day of the week: along the same rationale, this feature
can make the DNN able to recognize patterns of battery
usage that depend on the day of the week. For example,
sports activities regularly practiced during the week may
be associated to a lower usage of the smartphone (e.g.,
when left in the locker) or to a higher usage (e.g., due
to activity-tracker applications), depending on the user’s
habits.

• Location: this feature can also discriminate different bat-
tery consumption patterns, which are often correlated with
the user’s location. The dataset includes data regarding the
user movements and labels for each place that was visited.
The locations are classified in 12 categories, such as home,
workplace, leisure place, and so on.

• Movement: finally, we consider a boolean feature indi-
cating whether the user is moving from one place to
another or is static. This piece of information can make it
possible to identify activities typically performed by users
while moving on foot or with public transportation, e.g.,
emailing, phone calls, or web/social network surfing.

We advocate that such features should be sufficient to discrim-
inate among the specific usage patterns of the different users,
thus making it possible to customize the prediction engine.

B. Preprocessing

To efficiently train the machine learning models, we first
need to preprocess the input data [16]. In particular, we stan-
dardized features and outputs by removing the mean and scaling
the amplitudes to get unit variance. By doing so, the distribution
of individual features is close to the normal distribution with
zero mean and unit variance.

We explored several machine learning techniques, namely
SVMs [17], K-Nearest Neighbors [18] (KNN), linear regres-
sion [19] and NNs [20]. The performance of these methods
has been evaluated in terms of the coefficient of determination

metric R2, which is a very popular criterion to measure and
analyze the performance of machine learning models [21].
Denoting by yi and ŷi the actual and predicted values of the
ith output, respectively, and by ȳ the mean of the actual values,
then the coefficient of determination is defined as

R2 = 1 −
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
. (3)

Note that R2 ≤ 1 and the fraction gives the mean squared
estimation error over the variance of the outputs. A perfect
predictor will yield R2 = 1, while a “dummy” prediction that
always returns the expected value of the output, disregarding
all inputs, would yield R2 = 0.

In our tests, a DNN with at least one month worth of training
data always outperformed all other methods and thus turned out
to be the most suitable tool for battery discharge prediction.

The parameters of the DNN were chosen by performing an
exhaustive search in the parameter space; each setting was
evaluated by cross validation, and successive rounds refined
the search space until convergence to the optimal settings.
The explored parameters were the size and shape of the
hidden layers of the network, the activation function of hidden
neurons and the regularization parameter α. We always used
the “L-BFGS” [22] solver, an optimizer in the family of quasi-
Newton methods, with 200 training iterations. In Tab. I some
meaningful iterations are shown. We also report the R2 score on
the training and validation sets. In particular we can notice that
the activation function and network structure strongly impact
both the network prediction performance (i.e., R2 validation
score and R2 training score) and the time required to train
the network and to perform the prediction. We found that a
distribution of the neurons across several layers allowed the
model to detect more complex battery usage patterns, yielding
in general better performance with both the ReLU and the
tanh activation functions, which showed the best performance,
as reported in the last 6 rows of Tab. I. On the other hand,
increasing the number of neurons does not always have a
positive impact on the test score, and usually requires longer
training phases (see rows 6 and 7 in Tab. I).

The model chosen after cross validation consists in a DNN
with 4 hidden layers of 200, 150, 100 and 50 neurons each,
respectively, shown in the last row of Tab. I. The best perform-
ing activation function was the hyperbolic tangent function, i.e.,
f(x) = tanh(x). In order to avoid overfitting, the regularization
parameter α has been set to the quite high value of 0.12.

Data processing, model training and performance evaluation
have been carried out by using the Scikit-learn Python frame-



20 40 60 80 100 120
−0.5

0

0.5

1
ID= 1

Days of data used for training

R
2

20 40 60 80 100 120
−0.5

0

0.5

1
ID= 2

Days of data used for training

R
2

20 40 60 80
−0.5

0

0.5

1
ID= 3

Days of data used for training

R
2

20 40 60 80 100
−0.5

0

0.5

1
ID= 4

Days of data used for training

R
2

20 40 60 80
−0.5

0

0.5

1
ID= 5

Days of data used for training

R
2

KNN BaseFit
LinReg NN
SVM

20 40 60 80 100 120 140
−0.5

0

0.5

1
ID= 6

Days of data used for training

R
2

Figure 2: Comparison of the performance of several models by averaging results from 20 random training/testing subsets. The legend is shared by all the
plots. The commonly employed deterministic baseline "BaseFit" is reported in orange and is the worst method in general; for the last 3 plots the R2 metric
of the BaseFit algorithm is below −0.5, therefore the curve does not appear in the specified range. The yellow curve "LinReg" displays the performance of a
simple linear regression fitting, while the blue line reports the accuracy of a KNN framework. Finally the efficiency of an SVM is reported in green while the
performance of our Deep NN is purple.

Test user
ID 1 2 3 4 5 6

Tr
ai

n
us

er

1 0.643 -0.0733 -0.293 -2.130 -3.508 0.642
2 -0.268 0.645 -0.581 -4.083 -6.479 -0.048
3 -0.195 -0.074 0.687 -2.490 -3.865 0.514
4 -0.121 -0.068 -0.220 0.664 -3.173 0.714
5 -0.110 -0.067 -0.223 -1.715 0.703 0.729
6 -0.070 -0.101 -0.423 -0.335 0.670 0.761

All 0.308 0.371 -0.167 -4.693 -3.725 -0.711

Table II: R2 values of DNNs with about 3 months worth of training data.
Each column reports the results of the testing on a different user, while the
rows specify the user on which the training is performed. For the last row, the
training is carried out by mixing data from all six students.

work [23]. The test set corresponds to 10% of the available
data for each user.

IV. RESULTS

We compare our prediction model with a baseline method
that is very similar to the estimation that is adopted in today’s
smartphones. This deterministic method consists of taking the
last 5 samples of the battery level history and obtain a linear
approximation of the discharge pattern via Least Squares linear
fit [13]. The linear approximation is then used to estimate
the remaining charge duration (basically, the same method we
used to extrapolate the charge lifetime in our training dataset).
We also compare the performance of our DNN with SVMs,
KNN regression and Linear Regression using the same input
features and training/test sets. The plots shown in Fig. 2 confirm
that, for all the 6 users of the considered dataset, the machine
learning models in general have better performance than the de-
terministic baseline method and, among the considered machine
learning techniques, the DNN achieves the best performance.

A. Prediction performance and generalization

The fully trained DNNs reached a mean coefficient of
determination of 0.7835, with a peak of 0.8620 for a user whose
dataset was particularly clean, with fairly regular battery usage
patterns.

As Fig. 2 shows, the deterministic battery estimation
paradigm is inefficient, as it bases its prediction only on
the recent battery history, without considering more general
patterns which can instead be accounted for by using location
and time-based information that is available at almost no cost
in every modern mobile device [24]. The clear advantage of
such a model, however, is that it does not require any training.

In order to test the generalization/discrimination capabilities
of our model, we trained the DNN using the data of a single
user and tested its prediction performance on the data of any
other user. The results of this test are shown in Tab. II, where
each row reports the R2 obtained for the different users when
the network was trained with the data of the user in the
corresponding row. The last row reports the results obtained
when training the network with a mix of the data of all the
users. It is clear that the DNN generally performs poorly if
trained on a user and tested on a different one, while the
performance is good when training and test data are from the
same user1. Moreover, the low performance values reported in
the last row of the table confirm that our model must be trained
only on personal data, otherwise it cannot learn accurately a
user’s personal patterns nor provide reliable predictions. This
proves that our model can learn a user’s behavior properly

1Disjoint portions of each dataset are used for training and testing.



1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Student ID

R
2

(a) One month of training data

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Student ID

R
2

Proposed model
3 samples
Home/Outside
No location
No location and movement

(b) Three months of training data

Figure 3: R2 score and 95% confidence intervals on test sets of NNs with different input vectors for every user. Performance with 1 month (left plot) and 3
months (right plot) worth of training data. Bars refer to different choices of the input vectors: “Proposed model” refers to the input vector described in Sec. III-A;
“3 samples” adds the last 3 battery level samples to the input; “Home/Outside” replaces the 12 location categories with a boolean input indicating whether or
not the user is at home; “No location” disregards location inputs; “No location and movement” disregards both location and motion inputs.

but can hardly generalize to other users. In other words, the
learnt model is strictly personal and dependent on the user’s
specific habits. As a consequence, the model needs to be
trained with local information that can be collected only by
the smartphone of each user, so that it is not possible to pre-
train the network and deploy it on a general device, rather
the DNN must be trained while the device is being used by
its owner and this process requires some time, as discussed
later. On the other hand, the DNN does not need to share
information with other users or with service providers in order
to be trained or provide the prediction. Considering the growing
concerns for the user’s privacy in location-based services [25]
and the decreasing willingness of the users to share location
information [26], these features of the proposed approach can
be appreciated by the users. Of course, during the training
phase of the DNN, the prediction of the battery charge lifetime
can be obtained with other approaches, in order to guarantee
the availability of the service to the user: when the training
is complete, the prediction will become more precise, being
tailored to the user’s habits.

B. Effect of incomplete input on the prediction
Our ”Proposed” input vector, described in Sec. III-A, consists

of the current battery level, the time of the day, the day of the
week, the location of the user, and the motion information. In
order to gain insights on the relevance of the different input
features on the prediction accuracy of the DNN, we considered
other input vectors, namely a larger input vector obtained by
enriching the Proposed one with the last three samples of the
battery level; then a smaller input vector with a boolean value
“home/outside” in place of the full 12 location categories; then
an input vector, named “No location”, without any location-
based data; and finally an input vector without location and
movement data, called “No Location and movement.” Fig. 3
shows the R2 score obtained for the different test users and
for each of these input vectors, when considering one month
(left-hand side plot) or three months (right-hand side plot) of
training data.

Tra
inin

g it
era

tion
s

0
50

100
150

200
250

300

log(Number of neurons) 1.0
1.5

2.0
2.5

3.0

R
^
2
 sco

re

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: R2 metric for the DNN as a function of model complexity, expressed
as the logarithm of the total number of neurons and the training time in epochs.

We observe that, with one month of training data, the
location-based DNNs outperform the models with incomplete
or no location data available for students 2, 3 and 5, while
for the other subjects the different input vectors yield com-
parable results. However, with three months of training data,
the advantage of a location-based input vector becomes more
evident for all the subjects. Without location information, the
“movement” feature becomes useless or detrimental: if the
DNN has no information on users’ location, it should just
disregard movement information. We can also notice that, in
general, considering more than the last sample of battery level
only brings small improvements in terms of R2. Furthermore,
from the confidence intervals in Fig. 3 we can see that a larger
amount of training data improves the stability of the prediction
and reduces its sensitivity to noisy input data, as expected.



C. Computational complexity of the prediction

Finally, we investigate the impact on the R2 metric of
the number of neurons and the number of training iterations
to reach convergence. We found that a network with 500
neurons is a good tradeoff between computational complexity
and reliability of the model. Fig. 4 shows the results of one of
our experiments. Note that with as few as 10 neurons and 100
training iterations, the DNN already outperforms the common
predictors of mobile devices that always yield negative R2

score during our experiments (see Fig. 2). However, increasing
the size of the model makes it more robust to variations and
noise in the training step and improves its performance with
respect to the other ML algorithms tested in this paper. On
the other hand, the increased computational costs of very large
DNNs have diminishing returns, as Fig. 4 clearly shows: the
DNN we used in this paper offers a good tradeoff between
prediction accuracy and computational complexity.

The computational complexity of the model is overall reason-
able. A training step of 200 epochs on 144 points, that represent
a day’s worth of collected data, requires 2 seconds of CPU time
for training and this can be easily performed while a device is
charging or may be relegated to a moment when the phone
is idle. A single evaluation of the remaining battery lifetime
requires less than 100 µs on a modern CPU, which makes
this model highly portable. Therefore, the proposed model can
be used locally, on the users’ smartphone, and does not need
computational offloading on a remote server, confirming its
privacy-oriented character.

V. CONCLUSIONS

In this work, we proposed a model for battery lifetime pre-
diction based on a DNN framework. We proved that such model
is able to learn and predict patterns of battery usage that are
strictly correlated to a user’s mobility trends. Thus, a learning
process leads to a highly customized battery prediction model
that can increase the accuracy of current battery life estimation
methods and can be integrated in optimization frameworks to
further increase the energy efficiency of the device. Moreover,
the proposed approach is self-contained and does not need to
disclose personal information to third parties, thus preserving
the user’s privacy.

As future work, we plan to implement and test the model on
a physical Android smartphone and experimentally verify its
performance on a larger number of users. We will also consider
whether there exist pre-training methods that can speed up the
learning process, thus providing acceptable performance even
with limited training.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index, Forecast and Methodology,
2015–2020,” Market Report, June 2016.

[2] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy con-
sumption entities on the smartphone platform,” in IEEE 73rd Vehicular
Technology Conference (VTC Spring), May 2011, pp. 1–6.

[3] X. Zhao, Y. Guo, Q. Feng, and X. Chen, “A system context-aware
approach for battery lifetime prediction in smart phones,” in ACM
Symposium on Applied Computing, ser. SAC ’11, 2011, pp. 641–646.

[4] J. Chon and H. Cha, “LifeMap: A Smartphone-Based Context Provider
for Location-Based Services,” IEEE Pervasive Computing, vol. 10, no. 2,
pp. 58–67, April 2011.

[5] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-based
smartphone energy optimization for everyday location monitoring,” in 9th
ACM Conference on Embedded Networked Sensor Systems, ser. SenSys
’11, 2011, pp. 82–95.

[6] L. Ghouti, T. R. Sheltami, and K. S. Alutaibi, “Mobility prediction in
mobile ad hoc networks using extreme learning machines,” Procedia
Computer Science, vol. 19, pp. 305–312, June 2013.

[7] J. Biesterfeld, E. Ennigrou, and K. Jobmann, “Neural networks for
location prediction in mobile networks,” in International Workshop on
Applications of Neural Networks to Telecommunications (IWANNT’97),
1997, pp. 207–214.

[8] J. Capka and R. Boutaba, “Mobility prediction in wireless networks using
neural networks,” in IFIP/IEEE International Conference on Management
of Multimedia Networks and Services. Springer, 2004, pp. 320–333.

[9] S. Parija, R. K. Ranjan, and P. K. Sahu, “Location prediction of mobility
management using neural network techniques in cellular network,” in
International Conference on Emerging Trends in VLSI, Embedded System,
Nano Electronics and Telecommunication System (ICEVENT), Jan 2013.

[10] F. Chiariotti, D. Del Testa, M. Polese, A. Zanella, G. M. Di Nunzio, and
M. Zorzi, “Learning methods for long-term channel gain prediction in
wireless networks,” in International Conference on Computing, Network-
ing and Communications (ICNC2017). IEEE, January 2017.

[11] Q. Liao, S. Valentin, and S. Stańczak, “Channel gain prediction in
wireless networks based on spatial-temporal correlation,” in IEEE 16th
International Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC), June 2015, pp. 400–404.

[12] O. Gérard, J.-N. Patillon, and F. D’Alché-Buc, “Discharge prediction of
rechargeable batteries with neural networks,” Integr. Comput.-Aided Eng.,
vol. 6, no. 1, pp. 41–52, January 1999.

[13] Y. Wen, R. Wolski, and C. Krintz, “Online prediction of battery lifetime
for embedded and mobile devices,” in International Workshop on Power-
Aware Computer Systems. Springer, 2003, pp. 57–72.

[14] E. A. Oliver and S. Keshav, “An empirical approach to smartphone
energy level prediction,” in 13th International Conference on Ubiquitous
Computing, ser. UbiComp ’11, 2011, pp. 345–354.

[15] D. N. Rakhmatov and S. B. Vrudhula, “An analytical high-level battery
model for use in energy management of portable electronic systems,” in
IEEE/ACM international conference on Computer-aided design. IEEE
Press, 2001, pp. 488–493.

[16] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing
for supervised leaning,” International Journal of Computer, Electrical,
Automation, Control and Information Engineering, vol. 1, no. 12, pp.
4091 – 4096, December 2007.

[17] D. Basak, S. Pal, and D. C. Patranabis, “Support vector regression,”
Neural Information Processing-Letters and Reviews, vol. 11, no. 10, pp.
203–224, October 2007.

[18] M. Maltamo and A. Kangas, “Methods based on k-nearest neighbor
regression in the prediction of basal area diameter distribution,” Canadian
Journal of Forest Research, vol. 28, no. 8, pp. 1107–1115, August 1998.

[19] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005.
[20] D. F. Specht, “A general regression neural network,” IEEE Transactions

on Neural Networks, vol. 2, no. 6, pp. 568–576, November 1991.
[21] R. Anderson-Sprecher, “Model Comparisons and R2,” The American

Statistician, vol. 48, no. 2, pp. 113–117, April 1994.
[22] G. Andrew and J. Gao, “Scalable training of L1-regularized log-linear

models,” in 24th International Conference on Machine Learning. ACM,
2007, pp. 33–40.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, October 2011.

[24] Y. Chon, H. Shin, E. Talipov, and H. Cha, “Evaluating mobility models
for temporal prediction with high-granularity mobility data,” in IEEE
International Conference on Pervasive Computing and Communications,
March 2012, pp. 206–212.

[25] A. Acquisti, L. Brandimarte, and G. Loewenstein, “Privacy and human
behavior in the age of information,” Science, vol. 347, no. 6221, pp.
509–514, January 2015.

[26] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,
L. F. Cranor, and Y. Agarwal, “Your location has been shared 5,398
times!: A field study on mobile app privacy nudging,” in 33rd Annual
ACM Conference on Human Factors in Computing Systems. ACM, 2015,
pp. 787–796.


