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Abstract—Supporting the Internet of Things and Smart City
applications is one of the most important goals in the ongoing
design process of 5G cellular systems. Another trend is an
increasing focus on data-driven optimization and Self-Organized
Networking, in order to automate network deployments and
increase performance and efficiency. This approach, however,
does not fully take advantage of the data generated by the Smart
City. In this work, we propose to process and use the information
flowing through the network from the city sensors to increase the
awareness of the network itself, improving the communication
performance. We exploit vehicular traffic data from the Traffic
for London (TfL) sensor network to infer mobility patterns and
improve the efficiency of LTE handovers.

I. INTRODUCTION

Self-Organized Networking (SON) techniques are expected
to be a cornerstone of future mobile networks: due to the
ever growing number of connected devices, the complexity and
variety of functions of a 5G network can only be managed with
self-adapting optimization techniques [1]. The rapid growth of
the Internet of Things (IoT) is one of the major contributors to
this complexity: the massive deployment of connected sensors
and actuators generates a significant amount of traffic [2] that
can put networks designed for human communications under
strain.

Smart Cities are one of the most important IoT applications:
the data generated by a network of sensors distributed all
around an urban area [3] is processed to help define policies
and provide new services to the citizens. The volume of
data that has to be transmitted and processed is significant;
however, Smart City sensors are not just a burden on cellular
networks, as the information they generate can be used by
the network to make smarter decisions based on a greater
awareness of the environment. The promise of higher effi-
ciency and reduced operating costs can be an incentive for the
network operators to support ambitious Smart City projects
with pervasive sensor deployments.

This mutually beneficial relationship between Smart Cities
and cellular networks is at the core of the “SymbioCity”
concept, originally proposed in [4]. This work builds on that
paradigm, exploiting vehicular traffic data from the London
Urban Traffic Control (UTC) sensor network to dynamically
adjust the asymmetric handover range expansion bias [5] in
Heterogeneous Networks (HetNets). In particular, this param-
eter can be adapted without manual tuning from the cellular
network operator, according to the average speed of the
vehicular traffic in the cell area, following a SON approach
driven by big data analytics. Handovers are expected to be

a major issue in ultra-dense HetNets, and the technique we
propose will improve the communication performance without
triggering the well-known ping-pong effect [6], [7].

The rest of this work is organized as follows. Sec. II presents
an overview of state-of-the-art techniques in traffic data analy-
sis, SON and handover management, while Sec. III describes
the Transport for London (TfL) traffic sensor network, the
available data, and our analysis of the vehicular mobility
patterns. We provide the details of our handover optimization
technique in Sec. IV, along with an example application using
the London traffic data. Finally, in Sec. V we make our final
remarks and suggest some possibilities for future research.

II. RELATED WORK

Smart Cities have been a very active field of research in the
past few years, and there is a burgeoning interest in their po-
tential from companies and governments worldwide [8]. Smart
City sensors can communicate using dedicated low power
networks, such as LoraWAN, SigFox and IEEE 802.15.4 [9],
or they can use the existing cellular networks, with lower
infrastructure costs (place&play paradigm), but with a possibly
significant impact on existing human communications [10].

The use of big data-driven optimization at various scales
(e.g., fog computing [11]) is one of the main 5G guide-
lines [12], [13], but the integration of the data from the
cellular network itself with those available in a Smart City
is still theoretical. Combining the knowledge of the external
world that a Smart City can give with SON techniques might
represent a big step towards a real cognitive network [14].

One of the network procedures that Smart City integration
might help optimize is handover: as cellular networks become
denser in response to the growing traffic demand in urban ar-
eas, and micro-, femto- and even picocells [5] are deployed all
over the world, smart and efficient handover strategies become
fundamental to maximize throughput and reduce Radio Access
Network (RAN) and Core Network (CN) signaling. The SON
approach is one of the most promising candidates to address
these complex issues [15], and mobility pattern information is
one of the most valuable assets that a Smart City can provide
to the cellular network.

Mobility affects ultra-dense network performance signifi-
cantly, as handover strategies need to adapt to it. The research
on mobility models [16], [17] and their integration in commu-
nication protocols (e.g., Medium Access [18] or interference
coordination [19]) is already ongoing, and using real Smart
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Fig. 1: Map of traffic in London from 12pm to 1pm on the
23rd of January, 2015. Free intersections are shown in green,
heavily congested ones in red.

City data as input for these techniques would reduce the
uncertainty compared to purely statistical approaches.

While handover algorithms are well-studied and several
decision criteria have been proposed in the literature [20], the
most common ones are based on Received Signal Strength
(RSS). 3GPP defines a baseline handover procedure for LTE
in [21], and most studies focus on optimizing its parameters.
The handover is triggered only if the difference between
the serving and the neighboring cell RSSs is larger than a
threshold value for the duration of the Time-to-Trigger (TTT)
parameter. This is meant to avoid unnecessary handovers due
to fluctuations caused by fast fading, but introduces a delay in
the association with the optimal evolved Node Base (eNB),
whose impact becomes more significant as the UE speed
increases [22], [23]. An analytical model for optimizing the
TTT is introduced in [7].

However, high handover delays might be just as damaging
to the user experience as a strong ping-pong effect. In order to
overcome this trade-off, we need to exploit other parameters,
such as the hysteresis threshold. Biasing this threshold towards
femtocells is already a standard practice to favor offloading
from the Macro tier [5], and it is possible to adapt the bias
based on the user mobility to reduce the handover delay
problem caused by the TTT. In [24], the authors present a
heuristic that reacts to late or early handovers and adapts the
bias for each pair of neighboring cells. Another work jointly
adapts the TTT and bias in a reactive manner [25]. In this paper
we use real vehicular data from TfL in order to dynamically
adapt the bias to the average speed of vehicles, avoiding the
ping-pong effect and increasing the throughput.

III. DATA GATHERING AND ANALYSIS

The London UTC sensor network is composed of more than
ten thousand sensors, buried in the road at critical junctions
all across the city center. The Split Cycle Offset Optimization
Technique (SCOOT) optimizer uses traffic data from the
sensors to adapt traffic light waiting times dynamically, in
order to reduce congestion. The raw sensor data of the first
quarter of 2015 for the North and Central regions of London

Fig. 2: Diagram of a traffic detector. Source: TfL.
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Fig. 3: Hourly average speed on the 23rd of January, 2015
at the intersection between Homerton High St. and Daubeney
Rd.

were publicly released by TfL. A sample map of traffic is
shown in Fig. 1.

Each sensor is a simple presence detector: it senses whether
a vehicle is above it every Ts = 250 ms, and returns a boolean
output as depicted in Fig. 2. The resulting binary signal is
packetized and delivered to a central server through different
communication technologies.

In this work, we analyze the TfL dataset to extract the
average vehicular speed at any crossing. Vehicle speed is
not directly provided by TfL, but can be estimated using the
detector output. If a vehicle of length L passes over a sensor
at speed v, the detector will generate n = b L

vTs
c ones in a row,

followed by zeros when the vehicle has completely passed the
sensor.

Therefore, assuming a reference vehicle length of L = 4 m,
it is possible to get an estimate of the vehicle speed as:

v =
L

nTs
. (1)

Fig. 3 shows the evolution of the average speed measured by
a single sensor over a whole day (namely, January 23, 2015):
as expected, the speed of the vehicles is higher at night because
of the lighter traffic, while during rush hour (from 8am to 9am



Fig. 4: UE trajectory in the considered scenario.

and from 5pm to 6pm) the average speed drastically decreases
(the spatial distribution of traffic is shown in Fig. 1).

IV. ASYMMETRIC HANDOVER BIAS OPTIMIZATION IN
HETNETS

After processing the sensor data as described in Sec. III,
we use the vehicular speed to optimize the handover range
expansion bias in a HetNet. This parameter is a constant,
broadcast by the eNBs, that each User Equipment (UE) adds to
the estimated Signal to Noise Ratio (SNR) of the neighboring
eNBs when considering whether to handover or not [21]. We
present a technique to dynamically adapt this parameter in
Macro and Femto eNBs (MeNBs and FeNBs, respectively) in
order to increase the capacity available to the UE.

In our scenario, one MeNB with transmission power PMTX
and one FeNB with transmission power PFTX are placed at
distance dMF from each other. The two eNBs transmit at
different carrier frequencies (off-band HetNets) to avoid cross-
tier interference [26]: fM0 for the MeNB and fF0 for the FeNB.
Following this assumption, we do not consider interference
in the remainder of this paper, thus the SNR is used as the
handover metric. Both tiers have equal bandwidth B. All the
parameters of the simulations are summarized in Table I and
are taken from [27], [28].

We consider a channel model with Friis path loss and log-
normal shadowing. Denoting by PHRX the power received by
the UE from the HeNB, with H ∈ {M,F}, and by PHTX the
transmission power of the HeNB, we get

PHRX(t) = PHTX(t)ΨSHα(t)h(f0, β, d); (2)

Parameter Value Description

PM
TX 46 MeNB transmission power [dBm]
PF
TX 26 FeNB transmission power [dBm]
fM
0 900 MeNB carrier frequency [MHz]
fF
0 1800 FeNB carrier frequency [MHz]
B 20 Bandwidth [MHz]
dM−F 40 Distance between MeNB and FeNB [m]
dF−UE 10 Distance between FeNB and UE [m]
σ2
M 8 MeNB log-normal shadowing variance
σ2
F 4 FeNB log-normal shadowing variance
βM 4.28 MeNB pathloss exponent (NLOS)
βF 3.76 FeNB pathloss exponent (LOS)

TABLE I: Parameters used in the simulation.

γH(t) =
PHRX
N0B

, H ∈ {M,F}; (3)

where ΨSH is the shadowing gain, which is distributed as
N (0, σ) when measured in dB, α(t) is the multipath fading
gain, and N0 = −143.82 dBW/MHz is the noise power
spectral density. The channel gain h(f0, β, d), which accounts
for the path loss attenuation with exponent β, is given by

h(f0, β, d) = A

(
c

4πf0

)2 (
d

d0

)−β

, (4)

where c is the speed of light, d0 is the reference distance of
the far field model [29], and A is a constant. The parameter
β is chosen from [28] in order to model respectively Line of
Sight (LOS) and Non Line of Sight (NLOS) channels for the
FeNBs and the MeNBs. We assume indeed that the FeNBs
are deployed on the streets, and thus have a direct path to
the UEs, while MeNBs are on top of buildings [30]. Finally,
γH(t) denotes the SNR at time t for the HeNB and is given
by Eq. (3).

For the sake of simplicity, we assume that one UE is
attached to the MeNB, moving as in Fig. 4 with constant speed
v following a straight trajectory X . The UE speed at any time
is derived from the TfL data as explained in Sec. III. We
consider the UE to move at the average speed of the traffic
around it. The data provided by the TfL sensors, indeed, does
not allow to track the speed of a single vehicle. Moreover, the
handover bias is a common parameter for all the UEs in the
area. Finally, the time scale at which it is possible to update
the handover bias does not allow to track the acceleration and
deceleration of vehicles at crossing lights.

The SNR at the UE while moving depends on the distance
from the Macro and Femto eNBs. As we can see in Fig. 5,
the SNR from the FeNB is higher than that from the MeNB
when the UE is close to the FeNB. The coverage area of the
FeNB is defined as the area in which its SNR is higher than
any other cell’s.

In this scenario, the UE has to start a handover procedure
towards the FeNB when the condition

PFRX(t) + γth > PMRX(t) (5)

holds for a period of time equal to the TTT, as specified
in [31]. Note that in the simulation we have assumed γth = 0
for the sake of simplicity. We hence set TTT = 512 ms [21],
which is high enough to avoid the ping-pong effect but small
enough to get a reasonable handover delay.

This TTT value improves the performance of the system
considerably when the traffic is moving slowly, but reduces
the Theoretical Spectral Efficiency ν = log2(1 + γ) when
the UE speed is too high. This is because a fast-moving UE
exploits the advantages of the FeNB for just a short time, while
it remains in the FeNB for TTT seconds after the condition (5)
is reversed.

To make sure that the UE starts the handover towards the
FeNB as soon as (5) is verified, an asymmetric handover bias
can be applied to PFRX . When the handover is towards the
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Fig. 5: γM (t) (dash-dotted) and γF (t) (solid) with a UE speed
of 16 m/s. Multipath fading is not considered in this figure for
the sake of visual clarity.

FeNB, the bias needs to be positive to anticipate the beginning
of the procedure, while when the handover is from the FeNB
to the MeNB, the bias must be negative. We define the SNR
difference in position x along the trajectory as

∆(x) = γ̄F (x)− γ̄M (x); (6)

where γ̄F (x) and γ̄M (x) are the average SNRs from the two
eNBs when the UE is in position x. Moreover, the trajectory of
the UE draws a chord within the coverage area of the FeNB,
with linear coordinates −r and r with respect to the central
point of the chord, as shown in Fig. 4. The optimal value of
the bias is then given by

B1 = ∆(−r − vTTT ) (7)

B2 = −∆(r − vTTT ). (8)

If the FeNB uses the optimal bias, the handover will be
performed exactly on the edge of its coverage area.

By applying B1 and B2 to PFRX , (5) becomes

PFRX(t) +B1 > PMRX(t) (9)

while the condition to leave the FeNB is

PMRX(t) +B2 > PFRX(t). (10)

The difference between γ̄(x) with or without bias can be
viewed in Fig. 6. Since the Theoretical Spectral Efficiency
ν depends logarithmically on γ̄(x), using this asymmetric
handover bias will increase ν, fully exploiting the FeNB. This
improvement can be seen in Fig. 7. This figure is obtained
calculating the average ν over 100 Monte Carlo simulations
with independent shadowing and fading for a UE speed from
4 m/s to 20 m/s.

In the simplest case, in which there is no FeNB and the UE
is always attached to the MeNB, νMeNB is essentially indepen-
dent of the UE speed. The second case is a legacy handover
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Fig. 6: γM (t) and γF (t) with a UE speed of 16 m/s. Multipath
fading and shadowing are not considered in this figure for the
sake of visual clarity.
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Fig. 7: Theoretical Spectral Efficiency as a function of the
vehicular traffic speed v.

with no bias: as the plot shows, νnoBias decreases drastically
as the speed increases, as the delay in the handover caused
by the TTT wastes most of the performance improvement
from the FeNB. If the UE speed is higher than 16 m/s, the
handover is so late that the UE would do better to disregard the
existence of the FeNB completely: as soon as the UE finishes
the handover process, it has to start it again since it has already
moved outside of the FeNB coverage area. In the last case, in
which the optimal asymmetric handover bias is applied, νBias
decreases when the speed increases, since the time in the FeNB
coverage area becomes shorter, but the FeNB is always fully
exploited. Since any moving UE spends a small fraction of its
time close to the border between two cells, the gain in terms
of absolute capacity is not large; however, the smart policy
can prevent capacity drops before and after handovers, which
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Fig. 8: Optimal handover bias throughout the day on the 23rd
of January, 2015.

already imply a possible hiccup in the connection.
The presence of the FeNB is detrimental to vehicular UEs

in the legacy scenario (no handover bias) if the speed of traffic
exceeds 16 m/s, since νnoBias ≤ νMeNB. However, setting the
optimal asymmetric handover bias allows network operators
to keep the FeNB switched on, benefiting both pedestrian and
vehicular UEs, in any situation, since νBias ≥ νMeNB at any
speed.

The optimal asymmetric handover bias over the course of
a day for a specific intersection can be calculated from the
TfL data as explained in Sec. III; the speed evolution shown
in Fig. 3 results in the bias shown in Fig. 8. As expected, the
handover bias is higher at nighttime, as the average speed of
traffic is far higher than during the day. For this reason we
can fix a threshold for the handover bias beyond which FeNB
can be shut down in order to save energy, leaving all traffic
to the MeNB. If we fix this threshold to 3 dB, then the FeNB
will turn off only in the middle of the night, when the load
on the MeNB is very light.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an optimization method that
exploits road traffic data to adapt the handover range expansion
bias in a heterogeneous cellular network. We showed that
knowledge of the traffic on each road and of its speed can be
used to improve the handover performance, and argued that
a tighter integration between the smart city and the cellular
network that serves it might be one of the most promising
approaches towards Self-Organized Networks.

In particular, we exploit our knowledge of the speed of
the traffic at any intersection to adapt the femtocell range
expansion bias and mitigate the inefficiency caused by the TTT
without incurring in the ping-pong effect; since the calculation
is simple, this can be easily implemented in real time. An
extended version of this paper with additional results and
discussions can be found in [32].

The technique we used in this work is just an example of
the possible benefits that the SymbioCity paradigm can bring
to cellular networks: in the future, we plan to systematize this
approach and integrate existing and new SON techniques along
with data analysis from different Smart City sensors, studying
and optimizing their interactions using data from both the cel-
lular network itself and the smart city around it. For example,
if there existed sensors that track the movement of each single
vehicle, the handover process could be further improved by
optimizing the relevant parameters for each user. Moreover,
the possibility to adapt proactively to predicted changes in the
speed of the traffic flow is also worth investigating; machine
learning and regression methods, fed with past data and traffic
control information as input, are a possible tool to accomplish
this. Another challenge for future systems of this kind is the
integration with novel technologies such as mmWave, which
requires intelligent mobility management.
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