

Improving TCP performance on mmWave cellular networks

Objective

Improve the performance of TCP on mmWave links

- Most widely used transport protocol
- Designed in the 80s for wired networks
- Applications performance depends on TCP performance

Large MSS

- Traditional networks use small MSS to match Ethernet MTU
- At mmWave frequencies, a large MSS yields a high throughput gain thanks to
 - Smaller headers overhead
 - Fewer ACKs in uplink
 - Faster window ramp-up

Zhang, Polese, Mezzavilla, Zhu, Rangan, Panwar, Zorzi, "Will TCP work in mmWave 5G cellular networks?", subm. to IEEE Com. Mag.

Michele Polese^{*}, Menglei Zhang^v, Marco Mezzavilla^v, Jing Zhu⁺, Sundeep Rangan^v, Shivendra Panwar^v, Michele Zorzi^{*} *University of Padova, Italy – "NYU Wireless, US - +Intel Corporation, US

TCP issues at mmWaves

- Pathloss
- Blockage
- High rate variability

Dense networks

- Dense networks decrease NLOS probability
- Need for smart mobility management schemes

High goodput (LOS yields higher PHY rate)

Low latency (limited bufferbloating)

Polese, Mezzavilla, Rangan, Zorzi, "Mobility management for TCP in mmWave networks", in ACM mmNets 2017

- Retransmission timeouts
- Bufferbloat

Cross-layer TCP proxy

 Cross-layer information to change the advertised window in the ACKs

MSS splitting

Latency reduction up to 43x

$D_{S1} + D_{RS}$ [ms]	2	6	11	21
$B_{\rm RLC} = 10 \text{ MB}$ $B_{\rm RLC} = 20 \text{ MB}$	11.8008	4.7547	2.5574	1.9888
	43.3299	11.5578	5.8104	3.6988

• **Goodput gain** up to 2.2x

$D_{S1} + D_{RS}$ [ms]	2	6	11	21
$B_{\rm RLC} = 10 \text{ MB}$ $B_{\rm RLC} = 20 \text{ MB}$	1.1941	1.6875	1.7202	2.2430
	1.0135	1.1448	1.0765	1.9901

Polese, Zhang, Mezzavilla, Zhu, Rangan, Panwar, Zorzi, "milliProxy: a TCP proxy architecture for 5G mmWave cellular systems", in Asilomar SSC conf. 2017