mmWave for Future Public Safety Communications

Michele Polese^{*}, Marco Mezzavilla^v, Sundeep Rangan^v, Coitt Kessler^o, *Michele Zorzi*^{*}

*Dept. of Information Engineering, University of Padova, Italy ^VNYU Wireless, Brooklyn, NY, USA ^OAustin Fire Department, Austin, USA

zorzi@dei.unipd.it December 12, 2017

Outline)

- Introduction
- PSC requirements
- Open challenges above 6 GHz
- Wildfire use case
- Conclusions

>mmWave communications

- Potentials
 - Bandwidth
 - Large arrays in small space

3GPP New Radio will support mmWave

PSC and mmWave

- Real-time high quality video
- AR/VR content
- Different kind of sensors (e.g., LIDAR)
- Low latency communications

PSC requirements

- Support to command and control hierarchy
- Interactive/non interactive
- Data and voice transmissions
- Resilient and robust networks
- Low latency

How can mmWaves meet these demands?

SAFECOM, US communications program of the Department of Homeland Security, "Public Safety Statements of Requirements for Communications and Interoperability Vols. I and II."

>mmWave limitations

- High propagation loss
 - Need to use directional transmission

Impact on PHY and MAC layer procedures

Challenges:

- Maintain alignment in dynamic scenarios
- Autonomous network discovery & reconfiguration

>mmWave limitations

- High penetration loss blockage
 - Fast variations of the channel quality

Challenges:

- How to get around obstacles
- Avoid losing connectivity

Challenges in PSC use cases

- Aerial/UAV and vehicular communication
 - Lack of measurements at mmWave frequencies
 - Sophisticated tracking
- Ad-hoc and resilient deployments
 - Frequent link adaptation/handovers
 - Suboptimal end-to-end performance
- Machine-type communications
 - Still unexplored

Example: wildfire scenario

Inspired by the Robotic Emergency Deployment team at the Austin Fire Department

Wildfire reporting

- Current operations
 - Record video on SD card and physically send to command
 - Use low data rate links (3G/4G)
- Ideally
 - Use multiple high-resolution lenses for photos and videos
 - 360 degrees video content

mmWaves can provide a high data rate

Performance evaluation

- Based on ns-3 + LTE module
- End-to-end performance analysis

I-TENDER 2017

Performance evaluation

- Gauss-Markov mobility
 - I.6 to 2.4 km IC UAV distance
- Channel model
 - Free space pathloss
 - Single LOS ray

Doppler + shadowingBF update every 5 ms

Parameter	Value
mmWave carrier frequency f_c	28 GHz
mmWave bandwidth	1 GHz
mmWave max PHY rate	3.2 Gbit/s
Beamforming vector update period	5 ms
Antenna combinations $A = N_{eNB} \times N_{UE}$	$\{16 \times 4, 64 \times 4, $
	64 × 16, 256 × 16}
Video source rate <i>R</i>	{1, 100, 1000} Mbit/s
Transport protocol	UDP
Max UAV speed v	30 m/s
Wildfire - IC distance	{1.6, 2.4} km
UAV height	30 m

Throughput evolution

- Test antennas with different number of elements
- Suitable configurations are
 - 256 elements at IC, 16 at UAV
 - 64 elements at IC, 16 at UAV

-TENDER 2017

Long-distance propagation only with BF gain

Throughput and latency

- Test different source rates
- Antennas with more elements increase the received power
 - Improve throughput
 - Reduce latency (fewer retransmissions)

D Beamforming strategies

- Compare
 - Optimal beamforming (based on long-term covariance matrix)
 - Beam search with pre-defined beams

Conclusions

- mmWave can be an enabler of next-gen PSC
 - Wildfire use case
- Several challenges need to be addressed
 - Reliability?
 - Long-distance communication?
- Need for a research platform

End-to-end research platform for PSC over mmWave

- Measure dynamic directional channels in Public Safety (PS) scenarios.
- Prototyping new ultra-low latency MAC and synchronization algorithms likely to be used in the PS links.
- Provide the first scalable real-time emulation of complex mmWave channels in PS settings.
- Development and integration of PS specific scenarios in end-to-end mmWave network simulator.

Useful resources

- ns-3 mmWave module
 - <u>https://github.com/nyuwireless-unipd/ns3-</u> <u>mmwave</u>
- mmWave networking research @ UNIPD
 - <u>http://mmwave.dei.unipd.it</u>
- NYU Wireless
 - <u>http://wireless.engineering.nyu.edu</u>

mmWave for Future Public Safety Communications

Michele Polese^{*}, Marco Mezzavilla^v, Sundeep Rangan^v, Coitt Kessler^o, *Michele Zorzi*^{*}

*Dept. of Information Engineering, University of Padova, Italy ^VNYU Wireless, Brooklyn, NY, USA ^OAustin Fire Department, Austin, USA

zorzi@dei.unipd.it December 12, 2017