
HIPSTER, the alternative file transfer protocol

1 Introduction

In this report we will describe the Homework Inherent Proto-
col Such That Efficiency Rises (HIPSTER), a file transfer pro-
tocol designed to work on top of the UDP transport layer. The
aim of the protocol is to minimize transfer time over an unreli-
able Transport Channel (TC), which introduces delay and
drops packets according to a certain model. In the first section,
the protocol will be described. Then, we will show the results of
some tests for the TC, demonstrating that it works as specified by
the model. In the last section test results for HIPSTER protocol
will be presented and we will show that the system reaches low
transfer times.

2 Protocol description

Figure 1: HIPSTER packet structure

The packet structure has been designed in order to add the min-
imum overhead, while providing all the functionality needed by
the protocol.
The Destination IP and port are needed for packet forwarding
within the channel and for the receiver to correctly reply to
the sender. The first two fields are the same within different
groups. Moreover, the size of the payload was included to ease
the parsing of the packet at the receiving side. Finally, CODE and
SEQUENCE NUMBER are used for signalling and error recovery.
The following values are used for the code:
• 0 means a regular data packet;
• 1 means the packet is an ACK, and the sequence number is

the same as the packet being ACKed. There is no payload;
• 2 signals the end of transmission (ETX). It is issued by the

sender and ACKed by the receiver.
Before the actual implementation a theoretical model of the pro-
tocol and the channel was developed. Such model showed that
the optimal packet length to minimize the transfer time is around
1000 bytes, so this protocol uses fixed-size packets whose pay-
load length is 1000 bytes.
The behaviour of the Data Sender (DS) is depicted in Fig-
ure 2. It is organized into two threads: the ListenerThread re-
ceives, decodes and enqueues ACKs, while SendThread is in

charge of sending all packets successfully and performing some
basic congestion control using the enqueued ACKs.

Figure 2: HIPSTER protocol DS

1



The inFlight counter in SendThread is incremented every
time a packet is sent and decreased when an ACK is received.
DS sends packets continuously until inFlight has reached the
maximum allowed window. Once the window is full the sender
will not send packets continuously, but will instead send a packet
every time an ACK is received. The blocked counter is used to
avoid deadlocks in case some ACKs are lost: it sets a maximum
delay before a packet is sent regardless of the received ACK.
Every time an ACK is dequeued the corresponding packet is re-
moved from the list of packets. Only when the list is empty the
transmission is considered complete. At this time DS sends the
ETX packet, which signals to the receiver that the transmission
is over. If the corresponding ACK is received the sender will exit
otherwise if a 2.5 s timer expires the ETX is sent again.

The Data Receiver (DR) is in charge of handling ACK
transmission and reordering the received packets. The protocol
assumes the random delays and drops introduced by the channel
would make in-order delivery extremely slow, so the decision
of shifting the burden of reordering on the receiver was made.
The DR listens continuously for new packets. Once it receives a
packet, it checks its CODE. If the CODE is 0 (DATA), the DR
stores the packet in a list and sends an ACK to the sender through
the TC. In the case the received packet contains an ETX (end
of transmission) code, the receiver acknowledges it, then pro-
ceeds to reorder the packets and finally writes the received file to
disk. The ACKs crafted by the receiver contain an empty pay-
load in order to minimize the channel drop probability, and the
sequence number refers to the single packet the receiver intends
to acknowledge, in order to inform the DS that retransmission of
that portion is not necessary.

Figure 3: HIPSTER protocol DR

3 Transport Channel test results

The Transport Channel (TC) module simulates a bad
channel among the DS and DR. It drops received UDP packets
of length L with probability Pdrop = 1 − exp(−L/1024) and
forwards the remaining ones with a delay distributed according
to an exponential random variable with mean 1024/ ln(L) ms.
The TC was tested in loopback, by measuring the delay between
the transmission of a packet by DS and its reception at DR. The
ratio between sent and received packets was also measured. The
payload of UDP packet used in this test is in the range from 12
byte (HIPSTER header length, thus the size of an ACK) to 1012
byte (actual size of HIPSTER packets). Each measurement was
taken 10 times. The results are in Figures 4 and 5. The tests
show that TC follows accurately the theoretical model, as the
few discrepancies are related to the Java random number gener-
ator and the finiteness of measurements. The distribution of the
delays introduced by the TC in a transmission fits the required
exponential RV according to the Kolmogorov-Smirnov test and
the comparison of the cumulative distributive functions (CDF)
of the two can be seen in Figure 6.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UDP payload = useful payload + HIPSTER header length [byte]

P
(d

ro
p)

 

 
Real
Expected

Figure 4: Dropping probability

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

UDP payload = useful payload + HIPSTER header length [byte]

D
el

ay
 [m

s]

 

 
Real
Expected

Figure 5: Mean TC delay

2



0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay [ms]

C
D

F

 

 

Real CDF
Expected CDF

Figure 6: CDF of delays introduced by TC, LUDP = 1012 byte

4 HIPSTER protocol test results

The transfer rate for files with different sizes was analyzed. Ta-
ble 1 summarizes the mean over five runs for the transfer time
and speed over localhost, while Table 2 reports the results
of the same tests with another channel, borrowed from a dif-
ferent group. Mean time is the time since the beginning of the
transmission at the sender until the reception of the ACK for the
ETX packet, while mean goodput is file size over mean time.

Size (MB) Mean time (s) Mean goodput (MB/s)
500 64.92 8.07
200 23.86 8.78
100 13.48 7.78
50 7.83 6.7
10 2.57 4.07
5 1.55 3.39
1 0.67 1.56

Table 1: Mean transfer time and goodput with our channel

Size (MB) Mean time (s) Mean goodput (MB/s)
500 62.63 8.37
200 23.54 8.9
100 14.04 7.47
50 7.85 6.67
10 2.4 4.34
5 1.56 3.35
1 0.67 1.56

Table 2: Mean transfer time and goodput with a channel from a
different group

Tests in a Local Area Network yield similar results. The transfer
rate over different ADSL and WiMAX links has also been
tested. In this scenario the algorithm needed some tuning of
the MAX_BLOCK constant due to excessive congestion. Such
variable has to be adapted to different networks. Bigger values
(in the order of 105) are better suited for slow networks with
longer RTTs. Smaller values instead (e.g. the default 128) are
better suited for fast networks with RTT of about 1 ms.

The goodput at the Receiver over time is in Figures 7 and 8.
They show the number of useful bits received every 500 ms,
normalized to this sampling time, for a 200 MB file and 500 MB
transmission. Both the figures show a common trend, with high
goodput at the beginning, which decreases once transmission
is almost completed, because of the retransmission mechanism
and the long delays for the ACKs in the TC. The sudden drops of
the goodput, instead, signal that congestion control mechanism
has kicked in.

0 5 10 15 20 25
0

20

40

60

80

100

120

Time [s]
G

oo
dp

ut
 [M

bi
t/s

]

 

 
Receiver goodput (200 MB)

Figure 7: Goodput at the receiver, file size 200 MB

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Time [s]

G
oo

dp
ut

 [M
bi

t/s
]

 

 
Receiver goodput (500 MB)

Figure 8: Goodput at the receiver, file size 500 MB

5 Conclusions

The HIPSTER protocol was designed in order to work upon net-
works with high round trip time and packet loss. Given the model
of the HIPSTER sender, receiver and TC, we developed a theo-
retical analysis in order to tune packet length. The implementa-
tion of the TC was tested and performed as expected. Finally,
tests with files of different sizes showed that the protocol can
reach high goodput and low transfer time.

3


