Implementation and Performance Evaluation of

ITU-T G.975.1 LDPC Binary Code
Channel Coding 15/16 Final Project

Michele Polese

2016-03-11

Outline

Field of application: DWDM submarine systems

LDPC Encoder: encoding matrix and implementation
Message Passing Decoder

LDPC Decoder C++ Implementation: the flexibility of OOP
Performance Evaluation

Conclusions

DWDM Submarine Optical Systems

Discrete memoryless o
source Destination

Channel e DWDM interfaces
encoder
with different optical

External Discrete channel Equali
transport networks,

Prorsdtec] e The channel can be
Photodetector
modeled as a

Gaussian channel.

decoder

Nspans

o)

EDFA EDFA EDFA

ITU-T G.975.1

Forward error correction for high bit-rate DWDM submarine
systems

Super FEC schemes for coding in submarine optical systems,
More robust than ITU-T G.975 FEC - RS (255, 239),
Concatenate RS or BCH with different options,

Low Density Parity Check code LDPC (32640, 30592).

LDPC (32640, 30592)

Information word with K = 30592, it fits a RS (255,239)
frame,

High coding rate R = % = 0.9374,
R log,(M)

BT
Hardware implementation suitable for application with 10G

and 40G fibers.

Spectral efficiency p = = 2R = 1.8748,

Encoding Procedure 1/2

The information bit are placed in a 112 x 293 matrix S,
Bit j, j € [1,30592], is inserted in position (r,293r + 292 — q)

with)
r = '/7
293

q=j+172

Entries in (0,292 — d), d € [0,172] are set to 0 and never
transmitted,

7 slopes sj, i € {1...7}, are chosen,

For each slope s; 293 lines are defined by

(37 b)|b = (5,‘3 + C) mod293, €€ [0, 292]

Encoding Procedure 2/2

293 x 7 = 2051 lines are defined,
The sum (modulo 2) of the bits in each line must be 0,

The parity check equations define a system of 2051 equations
in 2051 unknowns,

6 parity check bit are redundant, and removed from the linear
system, as well as the last equation (¢ = 292) for the first 6
slopes,

This system can be written as

Hc=0

Matrix H

105x293 7x293—6
H=205 [M N]

Row i of H is defined by a valid couple (s;, ¢;), and column j
corresponds to bit (j/293] , jmod293) in matrix S. Then

. J
17 |f./mod293 - \‘ J + ¢
hij = 203
0, otherwise

Given the line (sj, ¢;), a column of M contains a 1 if the
information bit in the related position belongs to the line, N if a
parity check bit belongs to the line.

From H to G

H is transformed to compute the encoding matrix G

2045 30765
Hioiny =2045 [N M |

2045 30765 2045
Hioiny | loas = 2045 [N M lpus |

Gauss elimination is applied to bring Hioiny | l2045 in a row echelon form,
then Jordan algorithm is used to isolate an identity matrix in first 2045
columns. The result is

2045 30765 2045
2045 [12045 N-IM NI]

and finally
30765 2045

H=205 [N"IM Iy |

Matrix G

Matrix G is obtained as

30765
30765 |30765
2045 | N7IM

For the Gauss elimination NTL! library is used. Then each row of
matrix K = N~IM is saved into a std: :bitset and stored to file.

"ttp://www.shoup.net/ntl/

http://www.shoup.net/ntl/

LDPC Encoder

The encoder is implemented as a C++ object. Upon
initialization, matrix K is read from file and loaded in memory,

Both infoword and codeword are std: :bitset,

The first 30592 bit of the codeword are filled with the
information word, then 2045 parity check bit are computed
with an and operation between the infoword and the
corresponding row of matrix K,

Three zero bit are inserted between the information word and
the parity check bits.

Message Passing Decoder

Variable nodes Check nodes

=
e The decoder is based
D_Eé on this factor graph,
e Decoding is
[Elé performed in the LLR

domain.

=
+]

[+

Leaf nodes

Figure: Factor graph for LDPC decoding

LLR and Leaf Nodes Messages

The LDPC code under analysis is a binary code. Therefore the LLR
associated to message u is expressed as

o (20)

Leaf nodes are initialized with received values, and under the
hypothesis of equally probable input symbols the LLR is

__1_
1 o 23 (r+1)

\/2mo?, 2r/

LLRg —, =In ==
8l / -1 (n-1) 2

1 e 20% / UW

\/2mo2,

Variable Node

A variable node represents a delta function, therefore the LLR on
each branch is
LLR_,j=>) LLRi,—
i#]j
This LDPC code has variable nodes with 7 branches connected to
check nodes, with the exception of variables figuring in linearly
dependent parity check equations, which have 6 outgoing branches.

==

Figure: Variable Node

Check Node 1/2

Each check node is connected to 112 variable nodes, and there are
2045 check nodes. With Sum Product algorithm, the LLR of
outgoing branch j is given by

LLRy ;=& [> & (|LLRio 1) | Misjsign (LLR;—,)
i#j

Figure: Check Node

Check Node 2/2

e The function ®(x) is given by ®(x) = —In (tanh (3x))
[[
4_ = |
S
% 9 i
ol
0 2 4

X

e Min Sum algorithm was implemented too, by changing the

update function in the check node
LLR—; = min {ILLRi 4} Njsign (LLR;)
i#]

Marginalization

The marginalization is carried out between leaf nodes g; and
variable nodes =, thus

A {0, if LLRg yx + LLR_,,x >0
X =

1, otherwise

Initialization and Schedule

LDPC codes have cycles. Therefore to decode we need

e Initialization: Variable nodes are initialized with the leaf node
LLR

e Schedule:

@ Run message passing on check nodes + and update their
outgoing LLRs

® Run message passing on variable nodes =

© Marginalize: if a codeword is found or if the maximum number
of attempts is reached stop, else go to 1

C++ Implementation 1/3

The message passing decoder was implemented using the flexibility
offered by Object Oriented Programming (OOP).

e VariableNode class represents a single variable node, and it
is initialized with a position in the standard matrix S and the
index of its 7 check nodes,

e CheckNode class represents a single check node, it knows to
which variable node is connected to,

e LdpcDecoder class contains a vector of variable nodes, a
vector of check nodes and a vector of received LLR. It handles
initialization, the update schedule and marginalization.

C++ Implementation 2/3

LdpcDecoder is initialized once per simulation campaign,
The ®(x) function is clipped to infinity () for x < 10~3%
and to 0 for x > 38,

The Sum Product update computes once all the ® values,
sums them and the subtracts the outgoing ®,

Testing: update in variable and check node is tested to check
if the results obtained are as expected.

C++ Implementation 3/3

e For each simulation, a single noise vector is generated, and
scaled by o, for each ,’f,—‘; with

1

E
23R

Ow =

e The decoding for each /% is launched in a separate thread, to
parallelize computations.

BER

Results: BER for different max number of iterations

102
103

10~4

——100
10_5 —a—50
20
1070 ——10
—-—1
10-7 Uncoded
- | | |
4.5 4.6 4.7 4.8 4.9
Ep
o [dB]

Figure: BER for different number of iterations

BER

1072

10-3

10~*

107°

106

10~

Results: the waterfall behavior

——100
20

——10

t

Uncoded

|
35 4 4.5 5 5.5

Figure: Waterfall is reached with 50 iterations

PER

10°

107!

1072

10-3

10~*

107°

Results: PER for 50 iterations

—— 50 iterations

W =T T T T T T T T T T

e > L | 1 B AR 1

35 4 4.5 5 55

Figure: PER for 50 iterations

BER

Results: comparison with a different choice of slopes

,_.
<
N
%

1073 8 E
107
107 E
106 ||+ 1234567 .
| 123571113 1
10-7 | Uncoded -
£ - - | | | | | =
4 42 44 46 48 5 52 54
Ep
No [dB]

Figure: Comparison with 2 different set of slopes

BER

1072

103

10~*

107°

106

1077

Figure: Sum Product vs Min Sum algorithm, 50 iterations

Results: comparison with Min Sum algorithm

—— Sum Product
—— Min Sum
Uncoded

]

D

r r r |
42 44 46 438

5

52 5.

| |
4 56 5.3

oyl vl ol el il gl

log1o(T) [s]

0.5

—0.5

Results: time to decode a packet

» Sum Product, 50 | J l l .

< Sum Product, 100

Min Sum, 50
- | | | |
34454647484955152535455
E,
= [dB]
No

Figure: Average time to decode a packet

Conclusions

LDPC code for DWDM submarine systems was presented,
Encoding and message passing decoding were described,
The C++ implementation was detailed,

Results show that Sum Product algorithm exhibits a waterfall
between 4.6 and 4.9 dB,

Min Sum algorithm exhibits a 0.6 dB gap with respect to Sum
Product,

The code is available on Github
https://github.com/mychele/channelcodingl1516.

https://github.com/mychele/channelcoding1516

Implementation and Performance Evaluation of

ITU-T G.975.1 LDPC Binary Code
Channel Coding 15/16 Final Project

Michele Polese

2016-03-11

