
Implementation and Performance Evaluation of
ITU-T G.975.1 LDPC Binary Code

Channel Coding 15/16 Final Project

Michele Polese

2016-03-11

Outline

• Field of application: DWDM submarine systems
• LDPC Encoder: encoding matrix and implementation
• Message Passing Decoder
• LDPC Decoder C++ Implementation: the flexibility of OOP
• Performance Evaluation
• Conclusions

DWDM Submarine Optical Systems

124 4 Channel Coding for Optical Channels

concatenated and interleaved codes in the same section. In Sect. 4.6 we introduce the
trellis description of LBCs and describe the Viterbi algorithm. Finally, in Sect. 4.7
we describe convolutional codes.

4.1 Channel Coding Preliminaries

Two key system parameters are transmitted power and channel bandwidth, which
together with additive noise sources determine the signal-to-noise ratio (SNR) and,
correspondingly, BER. In practice, we very often come into situation when the tar-
get BER cannot be achieved with a given modulation format. For the fixed SNR, the
only practical option to change the data quality transmission from unacceptable to
acceptable is through use of channel coding. Another practical motivation of intro-
ducing the channel coding is to reduce required SNR for a given target BER. The
amount of energy that can be saved by coding is commonly described by coding
gain. Coding gain refers to the savings attainable in the energy per information bit
to noise spectral density ratio .Eb=N0/ required to achieve a given bit error proba-
bility when coding is used compared to that with no coding. A typical digital optical
communication system employing channel coding is shown in Fig. 4.1. The discrete
source generates the information in the form of sequence of symbols. The chan-
nel encoder accepts the message symbols and adds redundant symbols according
to a corresponding prescribed rule. The channel coding is the act of transform-
ing of a length-k sequence into a length-n codeword. The set of rules specifying

Discrete memoryless
source

EDFA

N spans

EDFA

D+ D-

D-

D+

EDFA

EDFA

EDFA

Destination

EDFA

Discrete channel

Channel
encoder

Laser
diode

External
modulator

Channel
decoder

Photodetector

WDM
multiplexer

WDM
demultiplexer

Equalizer +
decision circuit

Fig. 4.1 Block diagram of a point-to-point digital optical communication system

• DWDM interfaces
with different optical
transport networks,

• The channel can be
modeled as a
Gaussian channel.

ITU-T G.975.1

Forward error correction for high bit-rate DWDM submarine
systems

• Super FEC schemes for coding in submarine optical systems,
• More robust than ITU-T G.975 FEC - RS (255, 239),
• Concatenate RS or BCH with different options,
• Low Density Parity Check code LDPC (32640, 30592).

LDPC (32640, 30592)

• Information word with K = 30592, it fits a RS (255,239)
frame,

• High coding rate R = K
N = 0.9374,

• Spectral efficiency ρ =
R log2(M)

BT
= 2R = 1.8748,

• Hardware implementation suitable for application with 10G
and 40G fibers.

Encoding Procedure 1/2

• The information bit are placed in a 112× 293 matrix S,
• Bit j , j ∈ [1, 30592], is inserted in position (r , 293r + 292− q)
with

r =

⌊
j

293

⌋
q = j + 172

• Entries in (0, 292− d), d ∈ [0, 172] are set to 0 and never
transmitted,

• 7 slopes si , i ∈ {1 . . . 7}, are chosen,
• For each slope si 293 lines are defined by

(a, b)|b = (sia + c) mod 293, c ∈ [0, 292]

Encoding Procedure 2/2

• 293× 7 = 2051 lines are defined,
• The sum (modulo 2) of the bits in each line must be 0,
• The parity check equations define a system of 2051 equations
in 2051 unknowns,

• 6 parity check bit are redundant, and removed from the linear
system, as well as the last equation (c = 292) for the first 6
slopes,

• This system can be written as

Hc = 0

Matrix H

H =
[105×293 7×293−6

2045 M N
]

Row i of H is defined by a valid couple (si , ci), and column j
corresponds to bit (bj/293c , jmod 293) in matrix S. Then

hi ,j =

1, if jmod 293 == si

⌊
j

293

⌋
+ ci

0, otherwise

Given the line (si , ci), a column of M contains a 1 if the
information bit in the related position belongs to the line, N if a
parity check bit belongs to the line.

From H to G

H is transformed to compute the encoding matrix G

Htoinv =
[2045 30765

2045 N M
]

Htoinv | I2045 =
[2045 30765 2045

2045 N M I2045
]

Gauss elimination is applied to bring Htoinv | I2045 in a row echelon form,
then Jordan algorithm is used to isolate an identity matrix in first 2045
columns. The result is

[2045 30765 2045

2045 I2045 N−1M N−1
]

and finally

~H =
[30765 2045

2045 N−1M I2045
]

Matrix G

Matrix G is obtained as

G =


30765

30765 I30765

2045 N−1M


For the Gauss elimination NTL1 library is used. Then each row of
matrix K = N−1M is saved into a std::bitset and stored to file.

1http://www.shoup.net/ntl/

http://www.shoup.net/ntl/

LDPC Encoder

• The encoder is implemented as a C++ object. Upon
initialization, matrix K is read from file and loaded in memory,

• Both infoword and codeword are std::bitset,
• The first 30592 bit of the codeword are filled with the
information word, then 2045 parity check bit are computed
with an and operation between the infoword and the
corresponding row of matrix K,

• Three zero bit are inserted between the information word and
the parity check bits.

Message Passing Decoder

=

=

=

=

=

π +

+

+

...

...

Variable nodes Check nodes

Leaf nodes

Figure: Factor graph for LDPC decoding

• The decoder is based
on this factor graph,

• Decoding is
performed in the LLR
domain.

LLR and Leaf Nodes Messages

The LDPC code under analysis is a binary code. Therefore the LLR
associated to message µ is expressed as

LLRµ = ln
(
µ(0)

µ(1)

)
Leaf nodes are initialized with received values, and under the
hypothesis of equally probable input symbols the LLR is

LLRgl→=l
= ln

 1√
2πσ2

w

e
− 1

2σ2
w

(rl+1)

1√
2πσ2

w

e
− 1

2σ2
w

(rl−1)

 = − 2rl
σ2
w

Variable Node

A variable node represents a delta function, therefore the LLR on
each branch is

LLR=→j =
∑
i 6=j

LLRi→=

This LDPC code has variable nodes with 7 branches connected to
check nodes, with the exception of variables figuring in linearly
dependent parity check equations, which have 6 outgoing branches.

=

7

Figure: Variable Node

Check Node 1/2

Each check node is connected to 112 variable nodes, and there are
2045 check nodes. With Sum Product algorithm, the LLR of
outgoing branch j is given by

LLR+→j = Φ̃

∑
i 6=j

Φ̃ (|LLRi→+|)

Πi 6=jsign (LLRi→+)

+

112

Figure: Check Node

Check Node 2/2

• The function Φ̃(x) is given by Φ̃(x) = − ln
(
tanh

(1
2x
))

0 2 4
0

2

4

x
Φ̃

(x
)

• Min Sum algorithm was implemented too, by changing the
update function in the check node

LLR+→j = min
i 6=j
{|LLRi→+|}Πi 6=jsign (LLRi→+)

Marginalization

The marginalization is carried out between leaf nodes gl and
variable nodes =l , thus

x̂ =

{
0, if LLRgl→x + LLR=l→x ≥ 0

1, otherwise

Initialization and Schedule

LDPC codes have cycles. Therefore to decode we need
• Initialization: Variable nodes are initialized with the leaf node
LLR

• Schedule:
1 Run message passing on check nodes + and update their

outgoing LLRs
2 Run message passing on variable nodes =
3 Marginalize: if a codeword is found or if the maximum number

of attempts is reached stop, else go to 1

C++ Implementation 1/3

The message passing decoder was implemented using the flexibility
offered by Object Oriented Programming (OOP).
• VariableNode class represents a single variable node, and it
is initialized with a position in the standard matrix S and the
index of its 7 check nodes,

• CheckNode class represents a single check node, it knows to
which variable node is connected to,

• LdpcDecoder class contains a vector of variable nodes, a
vector of check nodes and a vector of received LLR. It handles
initialization, the update schedule and marginalization.

C++ Implementation 2/3

• LdpcDecoder is initialized once per simulation campaign,
• The Φ̃(x) function is clipped to infinity() for x < 10−300

and to 0 for x > 38,
• The Sum Product update computes once all the Φ̃ values,
sums them and the subtracts the outgoing Φ̃,

• Testing: update in variable and check node is tested to check
if the results obtained are as expected.

C++ Implementation 3/3

• For each simulation, a single noise vector is generated, and
scaled by σw for each Eb

N0
with

σw =
1√
2 Eb
N0

R

• The decoding for each Eb
N0

is launched in a separate thread, to
parallelize computations.

Results: BER for different max number of iterations

4.5 4.6 4.7 4.8 4.9
10−7

10−6

10−5

10−4

10−3

10−2

Eb

N0
[dB]

B
ER 100

50
20
10
1
Uncoded

Figure: BER for different number of iterations

Results: the waterfall behavior

3.5 4 4.5 5 5.5 6
10−7

10−6

10−5

10−4

10−3

10−2

Eb

N0
[dB]

B
ER 100

50
20
10
1
Uncoded

Figure: Waterfall is reached with 50 iterations

Results: PER for 50 iterations

3 3.5 4 4.5 5 5.5 6
10−5

10−4

10−3

10−2

10−1

100

Eb

N0
[dB]

P
ER

50 iterations

Figure: PER for 50 iterations

Results: comparison with a different choice of slopes

4 4.2 4.4 4.6 4.8 5 5.2 5.4
10−7

10−6

10−5

10−4

10−3

10−2

Eb

N0
[dB]

B
ER

1,2,3,4,5,6,7
1,2,3,5,7,11,13
Uncoded

Figure: Comparison with 2 different set of slopes

Results: comparison with Min Sum algorithm

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10−7

10−6

10−5

10−4

10−3

10−2

Eb

N0
[dB]

B
ER

Sum Product
Min Sum
Uncoded

Figure: Sum Product vs Min Sum algorithm, 50 iterations

Results: time to decode a packet

3 4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
−1

−0.5

0

0.5

1

Eb

N0
[dB]

lo
g 1

0
(T

)
[s

]

Sum Product, 50
Sum Product, 100
Min Sum, 50

Figure: Average time to decode a packet

Conclusions

• LDPC code for DWDM submarine systems was presented,
• Encoding and message passing decoding were described,
• The C++ implementation was detailed,
• Results show that Sum Product algorithm exhibits a waterfall
between 4.6 and 4.9 dB,

• Min Sum algorithm exhibits a 0.6 dB gap with respect to Sum
Product,

• The code is available on Github
https://github.com/mychele/channelcoding1516.

https://github.com/mychele/channelcoding1516

Implementation and Performance Evaluation of
ITU-T G.975.1 LDPC Binary Code

Channel Coding 15/16 Final Project

Michele Polese

2016-03-11

